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Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: 'mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
August 15, 2016

Problems

131. Proposed by Cornel Ioan Vialean, Timis, Rumania. Calculate

/’z' /75 log(1 + cosz) — log(1 +cosy)d d
xdy.
o Jo COS T — COS Y Y

132. Proposed by Valmir Krasniqi, University of Prishtina, Republic of Kosova.
Find all functions f: R* — R* from the non-zero reals to the non-zero reals, such
that

Flayz) = flay +yz +2) (@) + F(y) + F(2)

for all non-zero reals x,y, z such that zy + yz + zz # 0.

133. Proposed by Vasile Pop and Ovidiv Furdui, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Solve in My (Z5) the equation

. 1 2
xX5= (% Z).
G 3

134. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
Evaluate the following integral
0o .
/ sin (a1 z) Sm(a?x)e—aszdx
0 X xr
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where a1, a2, as are positive real numbers.

135. Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzdu, Romania.
Calculate

Frq2
F,, F, nt1/ 0!
lim ( v n!) " ( Y (2n — 1)!!) (tan 7747({%’_) - 1)
n—oo n!

where F}, is Fibonacci’s sequence.

136. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. We consider f: R — R a function a twice differentiable and
f" continous. Let (ay)n>1 such that a; # a;41 for all i > 1 which have the following
condition

a) lim, o0 (n + 12 f(any1) — n2f(an)) =0

b)lim,, o 22l f ) — g > g,

i) Find an example of such a function and such a string.

ii) Show that lim,_,o f'(an) = 6.

137. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology Damascus, Syria and Anastasios Kotronis, Athens, Greece (Jointly). Let n
be a nonnegative integer, m,p be positive integers and x € C. Show that for the

values of n, p, m, x for which the denominators don’t vanish, the following identity
holds:

S WD) S e D6
Z(_l) m+n7k> _Z( 1) (ernfk)( z+n )

k=0 (p +n-— k) (p-‘rn—k

(-1 L

W

p—m-+n
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Solutions

No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

124. Proposed by Cornel Ioan Valean, Timis, Rumania.
Find an expression F,(z) whose terms are linearly independent with the other
terms in the integrand such that

D

where «; # 0, o; € R.
Then, for a specific E,,(x) family that fulfills the requirements above, calculate

| Gt o oy + o) @0

<0

in closed form.
Solution by the proposer.

We note from the beginning that the text of the problem is meant to avoid the
trivial solutions like
aq Q2 Oy

log(z)  log*(x) log™ (x)
The key observation for getting an expression such that the integral converges is
based upon the terms of the form

1—2x ‘ .
o; , t=1,...,n.
(log(fﬂ))

1—2\
lim [ — ) =
o <log(m)> 0

First observe that

and '
1—z\"' )
li — | =(-1)"
R <log(x)> (=)
1_ i
Also, if we consider f(z) = - , 1 = 1,...,n, we see immediately that
log(x)

|f(z)] < M,Vx € (0,1).
Our aim is to choose E, (x) such that we obtain terms as above in our integrand,
and one of the ways is
= -2\ &
E,.(x) = o | —— ) — _
(0=2 == 2 i@

Adding this expression in our integrand, all reduces to testing for convergence

§Ee ) -
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Changing the order of summation and integration, we get, in absolute value, that

Yo [ () o
= al/ollig(;)dx—i—ag/ol (lig_(;))2dx+~-~+an/ol (ﬁ)g};})ndx

where, as seen above, at the only points where the integrands could have blown
up, near 0 and 1, they approach 0 and (—1)* respectively, and the first part of the
problem is finalized.

An important remark to this part is that we may find infinitely many functions
that on the numerator near 1 they behave like O(1 — x), and then we get infinitely
many solutions for the convergence.

To answer the second part of the question, we first calculate the integral

[ () =

If making the variable change x = e ¥, the integral becomes

(_1)1'/0008—@! (l_ye_y)i dy = (- / Z —Jy( )ey_y dy

fl)j (;) /OOO o' lem v dy dy
S [ g () e e
=G e

1 1 .
where above I also used that — = —/ 2 leTVT dx.
y T() Jo

. T(i+1) ! e 1
- _1) -
Using the fact that GrDET9)  @rit D E_ (1) ( ) , we get

<0

that

Note that the equahty I used above can be proved by writing that

i

1 B A;
z+D)(z+2)-(z+m)(z+m+1)(z+m+2)--(z+i+1) 7;304—3'—1—1'

Then, to find the coefficient A,,, multiply both sides of the equality above by
xr+m+ 1, and we get that
1 B Z T+m+1
(x+1)(z+2) - (z+m)(z+m+2)---(x+i+1) Trx+ji+1

Jj=0
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where if we let £ — —m — 1, we obtain that

m!((zl—)jn)! - r((: 137:) (Tzn) = An

—1)7 ;
whence A4; = (=D - ) (Z>
T+1)\y
Alternatively, we can use beta function and write that

T(i+1) T+ DI(E+1)
(z+D)(@x+2)-(z+i+1)  T@+i+?2)
Bx—|—1 i+1)

a:+1 1 o )2+171 dy
1
()
J
= Z / ( ) T dy
J

()
et Jjjr+j+1

j=

I 1
\ \

that shows again that the auxiliary equality I used above is true.
So, we have that

(=1 /OOO c’ (1 _ye_yy dy = (_1)%/000 (z+1)(x +g)_1(x i)™

and for calculating the integral in the right-hand side we use again partial fractions,
that is

i—1 itl

z N B
(x4+1)(x+2) - (z+i+1) _;x—i—k'

To obtain the value of B,,, we multiply both sides of the equality by x + m, that is

i—1 i+1
x :Zka—i-m
(z+1)(z+2)- - (z+m-1(x+m+1)---(x+i+1) = T r+tk

and then we let x — —m that leads to

(71)i+mmi71 (71)i+mmi71 Z' (1>z+mm11( ’L > B B

m—i—m+1) il m—DGi—m+1) I(i+1) \m-1
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Upon replacing m by k eetthatB*ﬂ ' Then, we have

p P mg y K, We g k — F<Z+1) ]f—l y Wi V
that

e 71 D' i [y ()L
—1)%s — li -1 i+kpi—1 -
( )’/0 et it DT T ;( )k (k—l)x—kkdm
1 AR . i 1
- 1' _1 k1i—1 -
F(i)sinoloé/o( )k (k—l)x+kdm
1 it1 _ ;
= 6] Slin;o z:(—l)kk”1 (k - 1) (log(k + s) — log(k)).
k=1
i+1 i

. _ kpi—1 .

Since we have that 1 = ];2(—1) k (k - 1) because
i il g il
= 1. = 1. - B
0= T e+ @titD) zllgo];wk kz::l ko

then we get

1 it+1 . ; it1 } ;
o) Jim <Z(—1)’W-1 (k N 1) (log(k + s) —log(k)) — Y _(~1)* k™" (k N 1) log(1 + 5))

k=2 k=2

=1y i+11’w’*1i1k log(k) — log(1
= iy i (S04 () onth )~ tosth) —tos(1 +.)

I
2|
<=
5 >

+1 ) i
(—1)FE—1 (k - 1) lim (log(k + s) — log(k) — log(1 + s)))

k::2 S§— 00
= L %(—1)’”‘11&_1 ‘ log(k)
(%) k—1 '
k=2
Hence
T1—-2 Lri1—g 2 Lr1—z\"
o dm—i—a/ ( ) dx—|—-~-—|—an/ < ) dx
/ log(x) *Jo \log(x) o \log(x)
n i+1 Ot 1 i
k+1 i
= ZZ (k - 1) log(k).
i=1 k=2
Q.E.D.

Editorial comment. The logic behind choosing these F,’s is not strong. One
might choose almost anything. The author of the problem should have asked explic-

‘fc ) dx which is the aime of these calculations.

itly to evaluate the integrals fo ( ios

125. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. Let
x, y and z be the sides of a triangle and r, R and s be the inradius, circumradius
and the semiperimeter of the triangle respectively. Prove that
1 n 1 n 1 < r* + 8r3R 4+ 124r2R? + 2r2s% — 8rRs? + s*
(x+y)? (z+2)?2 (y+2)2 "~ 128r2 R2s? '
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Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The function f : (0, +00) — R defined by f(t) = 1/t? is convex, so, by Popoviciu’s
inequality we have

;(f(x;y) +f<y42—z>+f<x42-z>> < f(x)+f(3y)+f(z)+f(x+g+z>

that is
1 1 1 27 1
< + = + ) + = (1)

1 1 1
+ + —
(x+y)?2  (y+2)2 (z+2)? x2 g2 22 8 (x+y+2)?

L
Now,  + y + z = 2s and zyz = 4R - area(ABC) = 4Rrs, thus
22y? + y222 + 2222 + 108 R?r? @)
128 R2r2s2

L =
Moreover, since
s%r? = (area(ABC))? = s(s — x)(s — y)(s — 2)
= 5(s% — 28 + (zy + yz + x2)s — 2y2)
we get
Yy +yz+ xz =12+ 4Rr + 52
Thus
m2y2 + y222 + 2222 = (xy +yz + xz)2 —4dxyzs
= (r* + 4Rr + s*)* — 16Rrs”
Replacing back in (2) and expanding we get
I r* + 124R?%r? + s* + 8Rr3 4 8252 — 8Rrs?
- 128 R?r2s2
and the proposed inequality follows from (1).
Solution 2 by Moti Levy, Rehovot, Israel.
Since (z + y)2 > 4xy, then

R <1(1+1+1>_123_11 n
(z+y)? (W+2)? (42 4\zy yz 2 4xyz 42Rr’

and by Euler’s inequality R > 27, we get
1 1 1 1
R N P AN PR T
Thus, the original inequality is proved once we show that
1 < rt + 83 R + 12472 R? 4 21252 — 8rRs? + st
1672 — 12872 R2 52 ’

(2)

or that
8R%s? + 8rRs? < r* + 8r° R + 12412 R? 4 21252 + s*. (3)



449

To this end, we use two well-known inequalities (Bottema et al., Geometric Inequal-
ities, 5.11, page 52, and 5.5 page 49):

s? < 27r?, (4)
s2>3r (4R+r). (5)
Applying () on the left side of (3)),
8R?*s? + 8rRs* < 216Rr* (R + 7).
Applying on the right side of ,
472 (67R2 + 26 Rr + 4r2) <7t + 8 R+ 124r2R? + 2r%s% + s*
Now it is straightforward to see that
216Rr* (R+r) < 4r* (6TR* 4+ 26Rr + 4r°)
follows from Euler’s inequality R > 2r and
54R (R +7) < 6TR? + 26Rr + 4r?
67R* 4+ 26Rr + 4r® — 54R (R +7) = (R —2r) (13R — 2r) > 0.

Also solved by Ramya Dutta, Chennai Mathematical Institute (student)
India; Nicusor Zlota, ” Traian Vuia” Technical College, Focsani, Romania
and the proposer.

126. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n —2 > m > 1 be integers. Calculate
/OO xmfl +.’bm72++$+1
0 x”—l—l—x”—g—i—~-~+x—|—1

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The starting point will be the well-known partial expansion of z +— m cot(7z2),

z+k

n
. 1
meot(rz) = nh_)n;o Z
k=—n
which is valid for z ¢ Z. Now, assume that 0 < x < 1 then

z": 11 +"§ 1 _2": 1
k:_na:+k_x+n k:0x+k kzlk—:c

n—1 1 n—1 1
1
= +Z/ t“k_ldt—Z/ th= gt
r+n i =Jo k=0"0
1 1 n—1
A t* ) dt
r+n Jr/0 ( ) (Z >

k=0
1

 (1-tM)dt
T+n 11—t

1_ —
“
0
1 t 1 _ = 1 tzfl _ ¢t
+/ 7tndt+/ —dt
0 —t 0

r+n 1 1-—1t

1ta:— =T
1 00—
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letting n tend to infinity we get

1 ,2—-1 —x
t —t
7 cot(mx) :/ ——dt

Now Suppose that 0 < z,y < 1 then

00 tyfl _ tzfl ty— 1 _ T 0 $y— 1 _ T
|- / . / iy
0 1—t¢ 01—t . 1=t

t—1/t
_/‘ﬂ L oo /1ty—t$
/ ¢ bgr—
- dt
o 1—t o 11—t

= mcot(my) — 7w cot(mx)

Considering 8 > 0 and a > 1+ § and taking x = 1/a, y = (8 + 1)/ we get

oo t(ﬁ+1)/a71 _ tl/afl
/ dt = 7 cot (W> — 7 cot (f)
0 1-t¢ o o
Finally, the change of variables ¢t = u® we obtain
oo B _
a/ u 1dt:7rcot <7r(ﬁ+1)>7rcot<7r)
o l—u” « «
Or,forall g >0and a > (G+1
oo B _
/ 4 1dt:7r(cotﬁ—c0t7r(ﬁ+l)>
0 e e e

In particular, taking « = n and 8 = m integers, we get

0 pm—=1 4 om=2 4 1] T T m(m+1)
— — dr = — (| cot — — cot ——
0 =l gn—24...4+2x4+1 n n n

which is the announced result.
Solution 2 by Moti Levy, Rehovot, Israel.

Following the footsteps of Victor H. Moll, we prove the definite integral 3.246 in

Gradshteyn and Rhyzik. Let [ := [~ =% 2 Py,

Integral representation of the Digamma functlon is

— T

1 — sl
v = [ e ©)

By change of variable x = t",
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1 tn—1 _ gn—ns—1 1 n—1 _ ns—1
(w(l—s)—l/’(s))—/o ﬁdt_/o Wdt (7)

1 —1 n—ms—1
teT —t
= e

Using we obtain the following expressions:

e )

[ETR ) o (25).

1—tn
117£Cm 1 Oolfl'm 1
I:/ P~ dx+/ P~ dzx.
0 1

S|

Sl 3e

Now back to our integral,
11—z 1—2an

1
t?

oo m 1,—-m
/ :$P*1d$ — / :t*PJﬂt*?dt
1 1 0

By change of variable z =

" — t—m —1
1 — 1 —m—p— —p—
_ / n—m __yn t—p+1t—2dt _ / tn—m-—p 1 _ tn—p 1dt
1 1 yn—m—p—1 _ gn—p—1
11—t tTmTPT L TP
I= / ——tPldt +/ — dt
B /1 =1 _ tn—p—ldt /1 gmtp—1 _ tn—m—p—ldt
) 1—tn o 1—tn

S0 e ()L (e () e ()

The Reflection Formula for the Digamma function is

Y (1—38)—1(s) =mcot(ms). (10)
/OO ﬂxpfldx _ (cot (Bﬂ') — cot <m erﬂ))
o l—an n n n
0 sin 2t

nsin IpsinZ (m +p)
Setting p = 1 in (10), we conclude that
/Ooxm_1+xm_2+-~-+x+ld m  sin(Zn
=
0

,m—2>m2>1.

=l 2 4.4+ +1 n sin T sin m:17T>

Solution 3 by Michel Bataille, Rouen, France.

Let f : [0, 00) —>"]}% be the continuous function defined by f(z) = ”ﬁ:iﬁ:i;j:jﬁ_ﬂ.
Then, f(z) = L= if  # 1 and f(z) ~ as x — oo (so that [ f(z)dx
exists since n —m > 2). It follows that the required integral is I; + I with
1 0
1—am m_q
11:/ Y _dr and Izz/ < dz.
0 1— 2z 1 " — 1

To evaluate Iy and I, we shall use the following lemma:

pn—m
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Lemma 1.

1 ja—
Tfa>0, atb>0, then/ PO g pas by (@) (1)

1—t
0
where 1 denotes the digamma function defined for x > 0 by

o= F0 LS (3 )

[v is Euler’s constant.]

Proof.

1 b
For all ¢ € (0,1), 7&5 ) — D (i L gntatb=1) apd ¢nte-l — gntatd—l

has the same sign as b. From

Z/ |tn+a 1 tn-i-a-‘rb 1|dt Z

n=0

o0

1
/(tn+a 1 tn+a+b 1 dt‘ < 00

nZ:O (n+a) n—|—a+b)

we deduce

oo

S 1 1
_ nafinabl
Jy;)/o(tJr Lo Z<n+a n+a+b> ¥la+b)—v(a)-

The proof is complet.
The change of variables z = t%/" yields

L fremta -y m+1 1
nen), e () ()

The change of variables x = t~/" gives

n

O A e e (B L0 W 1 m+1

v e () e )
Thus,

v (o) o 0-57) - () o 02))

But we have (1 — ) = ¢(z) + mcot(rz) (0<x<1) (by logarithmic differenti-
ation of I'(z)I'(1 — z) = ﬁ), hence

mm

1 sin %
IIHQJ(cot(”)_cotM*)f)):”. R
n n n n (sin %) (sin 7(7”':11)7()

Also solved by Mustafa Samir Khalil (student), Syria; Ramya Dutta,
Chennai Mathematical Institute (student) India and the proposer.

127. Proposed by Serafeim Tsipelis, loannina, Greece and Anastasios Kotronis,

Athens, Greece (Jointly). Evaluate 3 ;% %, where (¢ is the Riemann’s

zeta function.
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Solution 1 by Ramya Dutta, Chennai Mathematical Institute (student)
India.

N VI .
k:lm B ;; (2k + 1)(2k + 2)n2k+1

8

1 1
- 2;_: (2k + 1)(2k + 2) HZZ (2k + 1)(2k + 2)n2k+1

= =2 k= 1
1 (—1)k-1 = 1
= — 2
2+; r )T nzmz_: 2k + 1)(2k + 2)n2H
4 o0 o0
Using,
1 1+.’E oo I2k+1 1 ) IQ oo $2k+2
=1 — | = d =log (1 — =—— — . Wi
20g(1_x> x—|—;2k+1an 2og( J:) B ;2]6_’_2 e can
rewrite the summation,
oo 00 00 1
1 14 = 1 1
S5 ez =2 (e (1) 5t (1))
Consider the partial sum,
N 1
14 = 1 1
Z(log( +?)+nlog(12)>
1—-= n n
n=2 n
N
1 1 1
—2:<1og<nJr )+nlog(12>>
= n—1 n n
al 1
:Z((n+1)log(n+1)+(n—1)log(n—1)—2nlogn—n)
n=2
N
=(N+1)log(N+1)— NlogN —2log2 — —
(N +1)log(N +1) = Nlog og Z_:n
=1-2log2+(N+1)lo 1—|—i -v+0 e
= g g N Y N
Al 1
where, we used the estimate,;nzlog]\f—i-’y—&-O(N),
Thus,
- 2k+1 1
=1 N +1)1 — ) —y=1-
Z Dk ) (VA )°g< N> 7 7

k:l

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is 1 — v where 7 is the Euler’s constant.
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For z € (—1,1), we define

= <1+i>log(1+x)—|—<i—1>log(1—x)—x

o0

_ - 2 2n+1 1 2n+1
f@)=—otd gmge™ ™ =) e
n=0 n=0

:i 2 1 x2n+1
ot 2n+1 n+1

1 2n+1
(n+1)(2n+1)

Clearly

Mz

Thus, setting x = 1/j for j > 2 and adding we get

DD Zf() ®

oo

n:l

Zf (;) =D ((L+5)log(1+ )+ (j — 1)log(j — 1) — 2jlog j) —

= 1og;+ZylogJ—2ZﬂO%J—Z*

j=3

= —2log2+ (n+1)log(n+1) —nlogn—zf_

1
=1-2log2+nlog <1+n> +log(n+1) — H,

where H,, = 377, % is the nth harmonic number.
Recalling that lim (H, —log(n + 1)) =, we conclude that

if(;):2—210g2—7 (2)

Finally, note that

m—1 m—1 1
(n+1 2n+1 <2n+1 n+1>

1
=2Hs,, — 2H,, =2log2+ O <>
m
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Hence
S 1
——— =2log2 -1
7;1 n+D@En+1) % (3)
Combining (1), (2) and (3) we get

¢@2n+1) -
nz::l(n—kl)@n—kl) =1=7

which is the announced result.
Solution 3 by Moti Levy, Rehovot, Israel.

The integral representation of the Zeta function is

1 oo .’138_1

=kt & 1 Lo g2k
;(%H)(kﬂ) _,;(QkJrl)(kJrl) (Qk)!/o L

After changing summation with integration,

CRk+1) [ 1 & z2k
(2k+1)(k+1)_/0 em—1k§(k+1)(2k+1)!dx‘

The Taylor series of hyperbolic sine is sinh (z) = >, , (2k+1),

v t2k+1 £2k+1
cosh(:c)flz/O Slnh(t)dt:/o Z R+l Z/ ]

2k+2 2 2

Z2k+2)(2k+1) 7;20%-1-1)(2/{—&- 12 ?Z

k=0 k:l
It follows that

oo

k=1

2k

) (2k+ 1)1

22k 5
m = (cosh (z) — 1) — 1.

M8

k=1

i C2k+1 (2 cosh )_1> 1 it

t _

k:l (2k+1)( e 1

oo —t
_ (e +e 1) tl gt
et —1
e —|—e’t 2 1

/0 2(et—1) et g

Now we add and subtract < to the integrand,

= 2k + 1 > t_2 et < fet 1
Zgiﬁijfz/ fjigi_ifﬁ+/ et it
et — et —
Pt (2k+1)(k+1) 0 t2 (et — 1) t 0 t t—1
The first integral can be simplified

00 /ot 4 o=t _ —t 0 /1 _ —t
/ e +e 2 e’ dt:/ 1-(t+1)e n
0 t2 (et — 1) t 0 t2
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and by integration by parts

/OOO (W) dt = /000 (W) dt = /(;X> e tdt = 1.

The second integral fooo (8—7 — et7171> dt is equal to —v (the Euler’s constant). This
follows from the value of the Digamma function at 1

and from the integral representation of the Digamma function,

[oe) —t —xt
w(m):/o (i—le_et)dt.

CRk+1)
;(k+1)(2k+1) =1-7

We conclude that

Also solved by Michel Bataille, Rouen, France and the proposer.

128. Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzdu, Romania.

Let {an}n>1, {bn}n>1 be real sequences with a,, # an4+1 and by, # b,4+1 such that:
limy, 00 @, = @, limy, 00 by, = b, limy, 0o n(apy1 — an) = ¢ and limy, oo n(bp41 —

b,) = d, where a,b,c,d € R. Let f,g : R — R be differentiable functions with
continuous derivatives. Calculate

lm n(f(ant1)9(bni1) — flan)g(dbn)).

n—oo

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

For each n there is a,, between a,, and a,4+1 such that

f(an+1 - f(an) = (anJrl - an)fl(an)

From lim,, . a, = a we conclude that lim,, .. o, = a and consequently

Tl n(f(aner — f(an)) = f (@) 1)
Similarly, we have
1 n(g(an 1 — glan) = dg' () (2)

Hence, if A, = n(f(ant1)9(bnt1) — f(an)g(by)) then
Ap =n(g(bnt1) — g(bn)) flant1) +n(flant1) — f(an)) g(bn)
Therefore,
Jim Ay, = df(a)g'(b) + cf'(a)g(b)
which is the desired conclusion.
Solution 2 by Michel Bataille, Rouen, France.

For every positive integer n, we have

n(f(ant1)f(bnt1) = flan)f(bn)) = n ((f(ant1) = f(an) f(bni1) + (f(bns1) = F(0n)) f(an)).

Now, from the Mean Value Theorem, we may write

f(an+1) - f(an) - (an+1 - an)f/(un), f(bn—i-l) - f(bn) - (bn+1 - bn)f/(vn)
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where u,, (resp. v,) is a real number between a,, and a,+1 (resp. between b,, and

bpt1).
We deduce that

n(f(ant1)f(bnr1) — flan) f(bn)) = n(an+1_an)f/(un)f(anrl)"’n(anrl_bn)f/(vn)f(an)
Since 0 < |uy, — an| < |ap+1 — ap| and hm (an+1 —ap) = a—a =0, we see that
lim (u, — a,) =0, hence lim u, = a. Slmllarly7 hm vy, = b.

n—oo n—0oo
Since f and f’ are continuous functions, it follows that

T fan) = f(a), T f(bua) = F0), Tim f'(un) = f'(a), T f'(v,) = f'(b)
and so

Jim n(ans1—an) f'(un) f(bns1)+n(bns1=bn) ' (va) f(an) = cf'(a) f(b)+df (a) f'(b)
and with (1), we may conclude

Jim n (f(anta) f(bnyr) = flan) f(bn)) = cf'(a) £(b) + df'(b) f(a).

Editorial comment. This a corrected version of the statement of the problem.

129. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. Let f : [—1,1] — R be a function twice differentiable, with
the following properties:

2) f(~1) = £(1) = 0.
b) f” is continuous on [—1, 1].
Prove that

mmﬂwm%xekLmsé/<WWWm.

-1

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

Consider K (z,t) = (1 — max(x,t))(1 + min(z,t)). Then
1" ! 1"
/ K(x, 6)f" (t)dt = 1fx/11+t dt+(1+x)/(17t)f (t)dt
1—x[1+t I 1—:10/ F(t

+<r+wh1—wf< / Iz
—(1—=)f(z) - (1+fc)f( )=-2f(z
Thus, by the Cauchy-Schwarz inequality we have

1 1
Mﬂ@fﬁ/(Kmﬁfﬁ/(ﬂ@Fﬁ

—1 —1
But
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Thus
1

(@) < ga-a2 [ (o2

-1
and the desired conclusion follows since (1 — z%)? <1 for z € [—1,1].
Solution 2 by Moti Levy, Rehovot, Israel.
If f(2) =0 on [—1,1] then the inequality is trivially true. Otherwise, f (—=1) <0
and f' (1) > 0.
Now assume that f (z) attains its minimum at —1 < £ < 1. We make the following
change of variable:
€ oy, &

T1-g 1—¢

Note that ¢t =1 when z =1, t = —1when z = —1 and t = 0 when = = £.

The function F (¢) := f (2)],_,¢) attains its minimum at ¢ = 0, so that 4r (0) =0,
and Inax{(f (2))*; =€ [—1,1]} =max {F?(t); t € [-1,1]} = F?(0).

In terms of F (t), the original inequality becomes

t

1 (2F @)\ 1 )
6 (/_1 ( dt? ) dp(t.) dt | = F(0). (11)
Let g : [-1,1] — R, be a twice differentiable function defined as follows:
-2 g<p<i
n=1 2 g PSS 12
9 (%) {;(1+t)(”’;tt’5), ~1<t<0. ()
Then g (t) has the following properties:
g(-1)=g(1)=0, (13)
d (g (t) dp(ltyi)) 1
N 9/ - __ (14)
dt 2’
t=0+
t(90) st )
a7 1 (15)
dt 2’
t=0~—

o (15 )= (1 (o0 5) ) (1 (55 s

d

By Cauchy-Schwarz inequality

1 2 1 2 2 1 o
L d°F (1) 1 1 d*F (t)
/4 (g(t)p(t,g)> “ (/1< dt? ) dpgt,@dt> 2 (/19(15)%?5) o

(17)

)

>2
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1 i /1 d <g(t) @glig)) dF (t)
0

! 1 d&F@), 1 dF(t)
/O 90) g it = g (1 — .

dp(t.§)  dt dt
dt

0

1
-9 0.8 o dt dt

1 (90)

- dt> F<0>+/1 ! <g(t)®§?5))F(t)dt:

t=0

Similarly,

0 2
/,19(’5) L EFW)

dp(t,§)  Jt2
dt

d g(t)# od2 g(t)%
1 dF(-1) ( 2D o
=—g(-1) TR T F(O)+[1 3 F(t)dt
T’
t=0
We have shown that
1 2
1 d°F(t) _

The inequality is a consequence of and .

Solution 3 by Ramya Dutta, Chennai Mathematical Institute (student)
India.

For x € [—1, 1], integrating by parts,

x

f(fv)—f(—l)Z/_r1 f’(t)dt=($+1)f’(w)—/ E+1)f"(t)dt (1)

F(1) — f(z) = / F(tydt = (1 - ) f'(z) + / A-0f'md (2

Multiplying (1) with (1 — 2) and (2) with (1 4 ) and subtracting,

x

1

2f(9:):f(lf:c)/ (1+t)f”(t)dt—(1+:z:)/ (1—t)f"(t)dt

—1 T

1
= [ l%(t) f(t)at

(I1-2)(1+t) whentel-1,z)

where, ¢, (t) = {(1 +2)(1—t) whent e [z,1]
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Now, ¢, (t) is continuous in [—1, 1]. Applying Cauchy-Schwarz inequality,

12 () = ( / 11 Do (1)1 (1) dt)2 </ 11 (@0 at [ )

-1

2 ! " 2
<*/71(f (1)? dt

— 6 max (f(z))’ < / (1)) dt

z€[—1,1] 1

Since, for z € [-1,1],

/1 (¢2(1))* dt = (1—x)2/w(1+t)2dt+(l+m)2 1(1—t)2dt

—1 —1 x
Q-2 +2)° (1+2)*(1-2)°
+
3 3

2 2\ 2
=3 (1-2%)" <
Also solved by the proposer.

130. Proposed by Mohammed Aassila, Strasbourg, France. Among the first 2016
positive integers (from 1 to 2016) we underline those which may be represented as
the sum of 5 nonnegative integer powers of 2. Is the set of underlined numbers
larger than that of the nonunderlined ones ?

Solution 1 by Ramya Dutta, Chennai Mathematical Institute (student)
India.

Since, 2016 < 2048 = 2!, the binary representation of all integers up to 2016
has at most 12 digits. Integers with 6 or more 1’s in binary representation cannot
be underlined (not representable as sum of 5 non negative integer powers of 2).
Integers with five 1’s in binary representation,

5

12
Z 2% with a1 > as > as > aq4 > as are underlined, there are (5> such integers
j=1
less than 2048. Integers with four 1’s in binary representation,
4 4

Z 205 = 9m1—1 4 gar—l 4 Z 2% with a1 > as > a3 > a4 are underlined, there are
j=1 j=2

W N

12
( 4 ) such integers less than 2048. Integers with three 1’s in binary representation,
3
ZQ‘” = gu~l 4 ga—1 4 gas—l 4 gaz—1 4 985 with q; > ay > ag are underlined,
j=1

12
there are ( 3 > such integers less than 2048. Integers with two 1’s in binary repre-
sentation,
2
ZQ“J = 20=2 4 ou=2 4 gm=2 4 9a1=2 4 982 with q; > ay and a; > 2 are
j=1
. 12 . . 12 .
underlined, there are 9 )~ 1 (that is excepting 4 = 115 from 5 such integers)
such integers less than 2048.
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5
12 1/12
Thus, at least Z ( . ) —1=2"_ ( ) — 14 = 1572 integers less than 2048 are

2\ 6
j=2
underlined, i.e., at least 1572 — (2048 — 2016) = 1540 integers less than 2016 are
2016
underlined, which clearly exceeds 1008 = ——. The number of underlined integers

exceed the number of non-underlined ones.

Solution 2 by José M. Pacheco and Angel Plaza, University of Las Palmas
de Gran Canaria, Spain.

Any sum of 5 powers of 2 is an expression of the form 2Ft + 2%2 4 9ks | oks | oks
If the sum cannot be larger than 2016, the available values for the exponents range
from 0 to 10, since 2!1 = 2048 > 2016. There are two different ways of solving the
problem, depending on whether repetition of the k.s is allowed or not.

a) Repeated exponents allowed.

The largest available integers could be obtained as:

210 4210 4 910 4 910 4 910 — 5190 (impossible)
29 429 429429 + 29 = 2560 (impossible)
28 128 128 128 1928 = 1280 < 2016 (acceptable).

The number of integers N < 1280 which are representable as sum of five powers of

2 is

9+5—-1 13 13! 2016

9 — = =—=12 1 = —.
CRs < 5 > ( 5 ) 5! 8! 87> 1008 2

Therefore, the set of underlined integers is larger than its complementary.
b) Repeated exponents not allowed.

Now we can allow exponents up to 10: The worst case would be 210 4 29 4 28 +
27 + 26 = 1984 < 2016. Therefore, the number of integers N < 1280 which are also
representable as sum of five powers of 2 is

11 11! 2016

ol = = —— =462 < 1008 = —
g < 5 ) 5! 6! < 2’

and under this assumption, there are fewer underlined integers than not underlined

ones.

Also solved by the proposer.
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MATHCONTEST SECTION

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals

90. Let f and g be two continuous, distinct functions from [0, 1] — (0, +00) such
that [ f(z)de = [ g(z)dz. Let y, = [, f;(l;”)d:r for n > 0, natural. Prove that

(Yn)n>1 is an increasing and divergent sequence

Ap+1 + Zn

91. Let (an)n>1 C (%, 1). Define the sequence z¢g = 0, 2,11 = . Is this
- 1+ api17n

sequence convergent? If yes find the limit.

92. Fora positive integer n, define f(n) to be the number of sequences (a1, as, . .., ax)

such that ajas---ar = n where a; > 2 and k > 0 is arbitrary. Also we define
f(1)=1. Now let a > 1 be the unique real number satisfying > °7 =2.
Prove that

(a)

n= 1n0‘

(b) There is no real number 8 < « such that

210~

93. Let ¢ > 1 be a real number. Let G be an Abelian group and let A C G be a
finite set satisfying |A + A| < ¢|A|, where X + Y = {z + y|lz € X,y € Y} and |Z|
denotes the cardinality of Z. Prove that
|A+A+---+ A <A
| —
k
for every positive integer k.

94. Find all functions f : R — R such that
(fl@+y+2)° = (f@)*+ (fW)? + (f(2)* + 2(f(zy) + f(z2) + f(yz)), for all

x,vy, z real numbers.
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Solutions

85. Prove that

1
. s
b (e [ ) - [ 1

where f(z) = 2<tant if o ¢ (0,1] and f(0) = 1.
(Romania National Olympiad 2005)
Solution by Henry Ricardo, New York Math Circle, New York, USA.

We have, making one substitution and integrating by parts,

™ 1 " "=y ™ ! yl/n
n{—-—n ———dzr| ="n|—-— dy

4 0 1 + .rQ” 4 0 1 =+ y2

1 d(If 1 xl/n 1 1 — xl/n

n(/ 2—/ 2d:v>:n/ ——dx

0 1 +x 0 1 +x 0 1 +x

_ 1/ny N fO 1+t2 l/n
n(l—a /™) /0 T t2 / dx
_ / fO l-i-t2 . xl/n der.

Let vy, : [0,1] — R be the sequence defined by

T _dt

0 T+ 1/n o1 [T dt
vp(z) = = =z e
0

Then we can calculate the limit function as follows:

i 1+f2 if z € (0,1)
v(@) = lim on(x) = 40 ifz=0
T ife=1.

Finally, noting that | fo T fz | <z <1, we use the Bounded Convergence Theorem
to conclude that

1 n 1 1
lim n (2 —n/ Y dz) = lim vp () dz :/ (lim vn(aﬁ)) dx
n—00 4 o 1+ x2n n—00 o \n—oo

1
3 arctan x
fo 1+t dr = —dx,
0 X

. arctanx
where we note that lim —— =
T

z—0

COMMENT: This is a special case of a result (problem 1.64) proved by Ovidiu
Furdui in his book Limits, Series, and Fractional Part Integrals (Springer, 2013):
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Let f :[0,1] — R be continuous and ¢ : [0,1] — R be a continuously differentiable
function. Then (1) L = limnﬁoonfo1 " f(x™)g(x)dx = g(l)fo1 f(x)dz and (2)
lim, oo (0 fy 2" fa™)g(w) dz — L) = ~(g(1) + g/(1)) Jyf LLO® g

Also solved Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria; Florin Stanescu, Serban Cioculescu school,

city Gaesti, jud. Dambovita, Romania; Arkady Alt, San Jose, California,
USA and Michel Bataille, Rouen, France.

86. Define the sequence ag,as, ..., inductively by ag =1, a1 = %, and
2
na
Vn>1 a =—"1
= 4L n+1 1+ (n ¥ 1)ana

Show that the series -2 ) “£% converges and determine its value.

(Romania National Olympiad 2001)
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.
It is clear that a,, > 0 for n > 0. Note that for n > 1 we have

Ap+1
Qp

=na, — (n+ 1)ap41. (1)

This proves that the sequence {na, },>1 is positive decreasing so it must converge
to some nonnegative limit . If £ > 0 we conclude that

. a 1 . n 4+ 1)a 41 n
lim — = lim ( )t X =
n—oo Ay n—oo nany n + 1

Taking the limit as n tends to +o0o in (1) leads to the contradiction 1 = 0. Thus
¢ =0, that is lim,,_, ., na, = 0. Now, form (1) we get

m—1
Z Gl _ E—|—al—mam.
0 2% ao
Letting m tend to oo we get
o0
Z Ap+41 -1
n=0 an

Solution 2 by Michel Bataille, Rouen, France.

Note that a,, > 0 for every positive integer n (by induction). Let k be a positive
integer. Then we have

k41 kag kag(1+ (k+ 1)ag) — k(k + 1)a?
ae 1+ (k+ Day 1+ (k+ 1ay ar=(k+Darm (1)
and for any positive integer K, we may write
K K K
Z Thtl @+Z s 1—&—z:(kak—(I<:—|—1)ak+1) = 1-l—(a1—(K-i-1)ClK+1) =1-(K+1)ag41
e = 2 4 2

Now, from (1), kay — (k + 1)ag+1 > 0 for all k € N, hence the sequence {kay}r>1
is decreasing. As this sequence is also bounded below (by 0), it is convergent. Let
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{ = klim kay,. Since aj = % - (kay), we have hm ar, = 04 = 0; we also have
klim Shtl — klim (kar — (k+ 1)ags1) =0 — £ = O Thus

ag

0= i k41 . kay, / /
= 11m = 11m = =
k—oo  Qy k—oo l4+ap+ka, 14+0+¢ (41

and so £ = 0. From (2), we may conclude that the series Z is convergent and

its sum is 1 — limg oo (K + 1)ag+1 = 1.
Also solved by Arkady Alt, San Jose, California, USA.

87. Edited. Let f : [0,00) — R be a continuous 1-periodic function. For
a strictly increasing and unbounded sequence (z,)n,>o0 such that zo = 0, and
limy,— 4 oo (Tpat1 — ) = 0, we denote r(n) = max{k|xy < n}.

1 r(n) 1
a) Show that lim — Z(zkH —xk) f(zg) :/ f(&)dt

n—oo n

k 1

b) Show that lim — Z f / ft)

n—oo N

(IMC 2012)
Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

a) Consider 7, = (to,...,tm+1) the subdivision of the interval [0, 1] defined by
to=0, tmy1 =1, tpx=Tr g —n+1 for 1l <k<m=rn)—r(n-1).
Clearly, the step h,, of this subdivision satisfies
hy, = max{ti41 —tr : 0 <k <m} <max{z; —zj_1:j>r(n—1)}

and the Riemann sum corresponding to this subdivision is

m

R(f ) = Z(thrl —tr) f(tr)

k=0
Now, the fact that {x,} is strictly increasing and unbounded implies that {r(n)} is
also strictly increasing and unbounded. Thus the condition lim, oo (Tpt1 —Tn) =
0 implies that lim,, .o h, = 0. Hence

nlirréo R(f,mn) / flx
Moreover,
r(n)
R(fima) = Y. (w1 — ) f(x)
j=r(n—1)+1
+ @r(m-1)+1 =1+ DO0) + (0 — Tr(n)y+1) f(@r(n))
= An + (@r(n-1)11 =1+ D F0) + (0 = 2p(ny41) [ (Tr(n))

where
r(n)
A, = (41 — xj) f(z5). for n > 1.
j=14r(n—1)
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Now, since 0 < 1 —Z,(n) < Tp(n)+1 — Tr(n) We conclude that lim, oo (zrm) —n) =0
and the continuity of f at 0 shows that lim, ..o f(zy(n)) = f(0). Therefore

lim A, = / flx
n—oo
Finally, by Cesaro’s lemma we conclude that
A A
lim At FAn / fla
n—oo n
which is equivalent to a).
Remark. With only the integrability assumption on f, the conclusion of a) is
not correct. For example, consider f the characteristic function of the irrational

numbers (f = Ig\g), which is 1- periodic and integrable on [0, 1]. Moreover, consider
Tp =Y p_y 1/k. Clearly f(zy) =0 for every k, So
1 7(n) 1
lim S (aps — 2 flan) =0 £ 1 = / F(w)dz
0

n—oo 1N
k=0

b) Applying a) with z,, = Inn for n > 1, we see that r(n) = |e"], so

Le")

ngn;o;z:ln(u ) f(Ink) /f (1)
m(1+5)

lim 1% <1—1n <1+1>)f(lnk) =0 (2)
n—oo N k k e

Adding (1) and (2) we get

,}LH;O%Zf /f

Editorial comment: This is Problem 3356 proposed in Crux Mathematicorum
(Sept. 2008). A detailed solution appears in Crux Mathematicorum, 34: No 5,
September 2009, p. 341-3.

Also solved by Michel Bataille, Rouen, France and Stanescu, Serban
Cioculescu school, city Gaesti, jud. Dambovita, Romania.

88. Find all functions f : Rt — RT such that
(x+y)fuf(x) + fy)) = 2 f(yf(x))

But

(llc —1In (1 + ;)) f(nk)| < 2o 1 (;11] b Z

k=1

Thus

for all z,y € RT.

(BMO-shortlist 2015)
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Solution by Michel Bataille, Rouen, France.
We show that no such function can exist. Assume that f is a solution. Let us show
that f is injective. To this end, consider =,y > 0 such that f(x) = f(y). From the
equation, we get

(@+yf(Qy+1)f) =2"fwfly) Q.
On the other hand, taking = = y in the equation yields

2f (2y+Df W) =v*f W) (2.
Combining (1) and (2), we obtain

(z+ )y f (uf(y) =22°f (yf(y))

or, since f(yf(y)) > 0, (z + y)y? = 223, that is, (z — y)((z + y)? + 22) = 0.
Since (z + y)? + 22 > () we must have z = y, as desired. Now, let us take

y = V2 in (2): ((2f+ 1)f(vV2)) = 2f (V2f(V2)). Since f is injective, we
have (2v/2+1)f (\[) V2f(v/2), hence f(+/2) = 0, a contradiction with f(z) > 0

for all z € RT. The conclusion follows.
89. Find all real positive solutions (if any) to
B4+ 22 =r+y+ 2 and
2 + y2 +22 = TYZ.
(Canada National Olympiad 2005)
Solution by Michel Bataille, Rouen, France.

There is no solution. For the purpose of a contradiction, assume that (z,y,2)
satisfies the two equations and z,%,z > 0. Then, from AM-GM, zyz = 22 + 2 +
22 > 33229222, hence 231323 > 2722?22 and so xyz > 27. Since x +y + 2z =
23 + 3 + 23 > 3xyz, it follows that  +y 4+ 2z > S1.
Now, by the Cauchy-Schwarz inequality

3@ + 9 +27) = 1+ 1+ 1)@ +y* +2%) > (v +y +2)%,
hence we would have
Py + 22 By = +y+2 3@+ +2) < (@t+y+z)—(r+y+2)?<0
(the last inequality because z +y+ 2z > 81 > 1). The obtained inequality =3 +y3 +
2% — 3zyz < 0 is the sought contradiction since x® + 3% + 2% > 3zyz by AM-GM.

Also solved by Arkady Alt, San Jose, California, USA and Florin Stanescu,
Serban Cioculescu school, city Gaesti, jud. Dambovita, Romania.
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MATHNOTES SECTION

Series expansion of a function defined by integral

ANASTASIOS KOTRONIS

Abstract. In this article we generalize a problem that was proposed by Murray
Klamkin and Andy Liu on College Mathematical Journal and a closely related one
that was discussed on the Art Of Problem Solving forum. We approach the problem
in two ways.

1. INTRODUCTION

On January 1992 issue of the College Mathematical Journal (see [1]) Murray Klamkin
and Andy Liu proposed the following problem:

e In2 n2 1
If I(n)= —d 0 how that — < I —+—
(n) /1 Tt 4 >0, show that —- < (n) < + pRcE

An asymptotic estimate of the closely related integral fol H—ﬁ dx was also discussed
on Art Of Problem Solving forum (see [2]). We generalize the above giving a com-
plete expansion of the mentioned integrals, in terms of the Riemann zeta function,
approaching the problem by two ways. On what follows we denote:

1 1 +00 1
Aq(t) .:/0 To a0 ;dr and  Ax(t) = /1 1ot dz; t>1
and we will show that for ¢ > 1:
1 _ 21 k 1— 21—k
ey ) g ey = 3 (20

tk
k>1 k>1
where for the first summation index, (1 — 217%)¢(k) is interpreted as limj_,+ (1 —
217F)C (k).
2. MAIN RESULTS

Theorem. Let
1 1 —+00 1
Aq(t) = d d As(t) := — dux; t> 1.
(0= [ e ad A= [ e e

For ¢t > 1:

=1 T2 s 0220

tk
k>1 k>1

where for the first summation index, (1 — 2'=%)((k) is interpreted as limy_,q+ (1 —

217 F)C(k).
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Proof. On this first approach we expand A;(t) and As(t) directly:

it (a) th —1) —1) 1

1
z>0 i>0 i>0 i>1 +

_1)¢ H—kl _1)¢ _1Vitk—
=1+z<it>zm DB I S B e

i>1 k>0 i>1 k>1 i>1 k>2

L m2 (- | -
T 221<<22—1>k @) ) Z
n _9l—k
IR SRS il
k>2

where the change of integration and summation order in (a) is justified by the dom-
inated convergence theorem and the change of summation order in (b) is justified

by absolute convergence. Now, for k& > 1, since from the monotonicity of z* on
[1,+00) we have

e e [T
k-1 J, T e Llmws e

i>1
which yields
. 1—k o (1= 217F) (. .
Jim (1-2775)¢(k) = lim “————"(k —1)¢(k) = In2,
we can write
(1—2F)¢(k
1+ (1 ﬁ, P> 1
k>1
as desired. For As(t) we perform the change of variables © = 1/y and the procedure
is almost the same. ]

Now let us see the second approach of the announced result.

Proof. Here we expand As(t) directly, but in a somewhat more complicated way
than in the first approach (the same could be done with A;(t)). A;(t) is expanded
indirectly from the expansion of A;(t) + A2(t) which is easier to be found.
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For A;(t) + Ax(t), with ¢ > 1 we have:

+oo 400 -1
1 = 1 t 11 1 1 1
/ dy —=2 x/tf/ v du—fB ——,=)==-T(1—=)T{- zzcsc(
o l+at t)o 1+u t £t t t t t

2(22F=1 — 1)Byym? 1—21 2k)<(2k)
_Z k+1 2k _Z

k>0 (Zk't2k k>0
(14 (- 1— 21k ¢ (k 1+ (—1)F) (1 =21k (k
_kz )(k )()_sz( ( ))ik )¢ (k)
>0 >1

where By denotes the k—th Bernoulli number, B(z,y),I'(z) denote the Beta and
Gamma function respectively and we used that

L(2)T(y)

P =y

'l —2)I'(z) =mcsc(mz), 0<z<1,

2%-1
cscx = Z(—l)kHWm%_l, 0<|z|<m, (see[3])
k>0 ’
((2k) = (- ﬁ“Bﬁgﬁ,keNﬂ C0) =~ (see )

We proceed expanding As(t) as follows:

+o0 —t 00 p—t(] _ ot 2, 1 1 -3(3+1) _,—%
Ag(t):/ :” da::/ z i ) da ”f/y Y * gy
1 1 0

1—g—2t 2t 1—y

since
H,=7+9Y(1+2x) for z>-1,

where H, is the extension of the Harmonic number to real arguments (see [5]) and
U(x) is the digamma function.
It is also true that

U(l+z)=—-v+ Z =1 ofor x| <1 (see [6]),

so for t > 1 we have
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Ay(t)
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1 m=1 k=1 m=1 ¢=1

+oo - +o0 + m+k 1 1 +o0 +o00 +o00 mk 1
e (" e Rer s (M)

+00 B +o00 1 00 —k 1 m +o00 B 00 1 1
=22 (Z (o) (-21) ‘1> — 22 ((1‘%

k=1 (=1 m=0 k=1 (=1

+oo ~ +o00o 1 1 +oo o .
:kz:;t k;<(%1)k - (Qg)k> :;t (1270 (R)),

with the change of the summation order, wherever takes place, being justified by
the constant sign of the summands and the coefficient of t~! being interpreted as
in the first approach. Now A;(t) is immediately evaluated and we are done. [l
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JUNIOR PROBLEMS

Solutions to the problems stated in this issue should arrive before August 15, 2016.

Proposals

51. Proposed by Valmir Krasniqi, University of Prishtina, Republic of Kosova. Let
0 < z,y,2 < 2 such that xyz = 1. Find all real numbers x,y, z such that

32(4=2) 4 gy(4-22) | 32(4-20) _ 97

52. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud. Dambovita,
Romania. Let a, b, c nonzero real numbers such that a + b+ ¢ = 0, prove that:

max{uz,uc c+a}§2+;<<a6><bcxca>>2

b c ba ¢ abc

53. Proposed by Mihdly Bencze, Brasov, Romania. Let ABC be acute triangle.
Prove that

mémime < (R + )%
where 7, R, s, m, be the inradius, circumradius, semiperimeter and the median of
the triangle respectively.

54. Proposed by Marcel Chiritd, Bucharest, Romania. Consider a triangle ABC.
Let D be a the midpoint on the median AM and M € BC'. Perpendicular on the
midpoint of the segment DM passes through the orthocenter of the triangle ABC.
Prove that <(BDC) = 90°.

55. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Let ABC' be acute triangle. Let AD be the altitude from
A to BC. Let wy, and ws be the circles with diameters BD and CD, respectively.
Denote by E the intersection of wy with AB, and by F the intersection of ws with
AC. Let G, H be the intersections of the line EF with w;, ws, respectively and their
order in this way F,G, H, F. Let I be the intersection of BG and DE and J the
intersection of CH and DF. Let O be the intersection of IJ and AD. Prove that
O is the circumcenter of the triangle DGH.
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Solutions

46. Proposed by D.M. Batinetu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzdu, Ro-
mania. Solve in real numbers the equation

1 2 3 4

=222 — bz — 4.
x—1+x—2+x—3+x—4 * ot

Solution by Michel Bataille, Rouen, France.

We show that the equation has six solutions, namely,

5 5 VI9+4v2 5 V9+4V2 5 9—4v2 5 V9—4V2

0.7.7 P P L,
272 2 ) 2 T2 2 ) 2
Let X =2—2and Y = X2 — X — 1 =22 — 52 + 5. Then, with these notations,
1 45X +2 2 35X -2

= 222 —bxr—4=2Y +5X —4
e 1 24 V-1 z-2"z-3 v41B 7 +

and the equation rewrites as

10XY +4
— =2Y X -4
Ve 1 +5

or, after rearranging,

(Y2 -2Y —1)(2Y +5X) = 0.
Thus, the solutions are obtained by grouping the solutions to 2Y +5X = 0 and to
Y2 -2Y —1=0.
e the equation 2Y + 5X = 0 is 2X?2 + 3X — 2 = 0 whose solutions for X are % and
—2. Recalling that X = x — 2 this provides the solution g and 0 for z.
e the equation Y2 —2Y — 1 =0gives Y = 1+ V2orY =1-— \/Z which leads to
the equations X2 — X — (2 ++/2) = 0 and X? — X — (2 — v/2) = 0. We obtain
1+ 92+4\/§ and 1V 92_4‘/5 for X. This provides ES 92+4\/§ and 2V 92_4\/5 for z.
The announced result follows.

Also solved by Henry Ricardo, New York Math Circle, New York, USA
and the proposer.

47. Proposed by Pham—Thanh Hung, Math. Dept. “Can Tho City” Vietnam. Let
a, b, c be positive real numbers. Prove that

(bic>2 ! (Ciaf " (aib>2 ’ 1O(a+(ba_+cl)))<l()b++cc;(j)+(ca—)'— - =

Comment by Michel Bataille, Rouen, France and Angel Plaza, University
of Las Palmas de Gran Canaria, Spain.

Let L(a,b,c) denote the left-hand side of the inequality. We show that neither the
inequality L(a,b,c) > 2 nor the inequality L(a,b,c¢) < 2 can hold for all positive
real numbers a, b, c.

First, takea =b=1and ¢ = 2. Thena+b—c = 0so that L(1,1,2) = §+$+1 <2
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and the stated inequality is not correct.

2
Second, take a = 1,b=c = ﬁ Then (L> = 2500 and
10(a+b—c)(b+c—a)(c+a—b) 1)° 100
=10(1—— ) - (1- —4
@+ D)+ )c+a) O 101 o) > 0

and so L(1,1072,1072) > 2500—490 > 2. Thus the reverse inequality is not correct
either.

Also solved by Arkady Alt, San Jose, California, USA.

48. Proposed by Titu Zvonaru, Comdnesti, Romania. Let P be a point on the
hypotenuse BC' of the right—angled triangle ABC. If X and Y are the intersections
of AP with the external common tangent lines to the circumcircles of the triangles
ABP and ACP, prove that XY = AP+/2 if and only if BC = AB+/2.

Solution by the proposer.

Let T'1(O1, R1),T'2(02, Ry) be the circumcircles of triangles ABP and ACP, re-
spectively. The tangent line through X intersects these circles at the points T, T5.
Using the power of X with respect to the circles I'y and I'y, we deduce that X is
the midpoint of the segment 71Ty (T1X? = XA - XP =T,X?).

We denote by M the midpoint of AP (hence the midpoint of XY).

Since, (X MO3) = <(0xT2X) = 90°,0,M = Rjcos B and OoM = RycosC,
applying pithagorean theorem and the Law of sines we obtain:
XM? 4+ 03M? = 0:T2 + T X? = XM? = —R3cos?C + R2 +
= 4XM? = 4R3sin* C + 0,0% — (R, — RQ) = XY? = 4R3 sin? O + (O M+
0o,M)%2—(R1—Ry)? = XY? = AP%2R? cos? C—R?+R3 cos? C—R3+2R; Ry cos B cos C

s T2

: 2 _ 2 cos BcosC 1
2R Ry. Slnce’ XY* = AP ( + 2sin Bsin C + 2blanlnC)
APNZ _ 2sin Bsin C :
we have (W) = [TsmBeoinCteosBoosC- Since, ABC is right-angled triangle, we

have sin BsinC = cos BcosC = 22 , then

XY =APV2 & o = & b+ +2bc=4bc & (b—¢)> =0 & BC = ABV2.

49. Proposed by Proposed by Armend Sh. Shabani, University of Prishtina, De-
partment of Mathematics, Republic of Kosova. Solve the equation

3.5"th 4113771 4527 + 2772 = 2016.
Solution by Michel Bataille, Rouen, France.
We show that the unique solution is x = 3.
Multiplying its both sides by 12, the equation becomes
180 -5 444 -3 +63-27 =27.3%. 7.

Let f(x) = 180-5% 444 -3% + 63 - 2*. The function f is strictly increasing on R (as
are the functions = +— 5%, z + 3%, 2+ 2%), hence the equation f(z) =27-3%.7
has at most one solution. However, it is readily checked that f(3) = 27-33.7. Thus
3 is the unique solution.

Also solved by Angel Plaza, University of Las Palmas de Gran Canaria,
Spain; Henry Ricardo, New York Math Circle, New York, USA and the
proposer.
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50. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathe-
matics, Republic of Kosova. Let p be prime number such that p = 7( mod 8).

We define A = {1,2,.., 251} and f(k) = |p| Z%2=1 | — 21| for all k € A and

prl is prime number, where |z] is greatest integer not greater than x. Prove that

7(4) = A,
Solution by proposer.

First we show that f(A) € A. Since p F +p— lJ —2kl>yp (2’“+7§—1 - 1) —2k-1 =

+1 2" 4p—1 k—1 _ —1 2" 4p-1 k—1
=0 %J*Q > -2t 4] = 2L Alsop{ 2= J—2 <
D 2’&;75_0 — k=1 = , therefore ‘p {MJ —2’“’1’ < %1. It is clear that
’p {L;g_lJ — 2]’“*1‘ 7é 0 hence f(A) € A. In order to solve the problem it is

enough to show that function is injective. Since p = 7(mod8) we have that 2“7

(%) (modp) = 1(modp). We assume that there exist positive integer ¢ < P5=.

Let ¢ be the smallest such number. It is clear that ¢ # 1; we know that for each

s > t such that 2° = 1(modp) we have s is divisible by ¢ and since for s = 2% is
P P

satisfied the condition: %1 is divisible with ¢, which is not possible since %1 is

prime number. Therefore the smallest number ¢ such that 2! = 1(modp) is t = %

and thus each two numbers from 2°, 21, .27 =1 have the diffrent reminder when

divide p. Let us denote #; the sequence such that ¢, € [—251, 1] and 2871 =

k k-1, p—1 _
tk(modp) and thus we have that |232=1| = V%J = WT*“ therefore

il

2p

= ‘ {2 AP 1J 2k— 1’ = ’p <L> - 2’“*1‘ = |tx|. Next we show that f is
aneCthe Indeed let a,b € A be positive integers such that f(a) = f(b). We show
that a = b. If @ > b then from f(a) = f(b) we have that |t,| = |ts| therefore t, =t
or ty = —ty. If ty = t, for all different a,b € A we have that 2¢~! # 2°=!(modp)
from where we have t, # t; which is contradiction. If ¢, = —t; then we have that
20-1 4 20-1 = O(modp) = 20=1(207% 4+ 1) = 0(modp) = 2°~% = —1(modp) Since
1<a-b< 5= L then 22(®=%) = 1(modp) and since 2(a — b) < p — 1 the only
possibility is 2(a —-b) = %1 which is not possible since % is odd. Therefore we
have that ¢, # —t, which is contradiction. Therefore f(a) = f(b) = a = b and this
shows that f(A) = A.
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