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PROBLEMS AND SOLUTIONS

Proposals and solutions must be legible and should appear on separate sheets, each
indicating the name of the sender. Drawings must be suitable for reproduction.
Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
August 15, 2016

Problems
131. Proposed by Cornel Ioan Vălean, Timiş, Rumania. Calculate∫ π

2

0

∫ π
2

0

log(1 + cosx)− log(1 + cos y)
cosx− cos y

dxdy.

132. Proposed by Valmir Krasniqi, University of Prishtina, Republic of Kosova.
Find all functions f : R∗ → R∗ from the non-zero reals to the non-zero reals, such
that

f(xyz) = f(xy + yz + xz)(f(x) + f(y) + f(z))
for all non-zero reals x, y, z such that xy + yz + xz 6= 0.

133. Proposed by Vasile Pop and Ovidiu Furdui, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Solve in M2 (Z5) the equation

X5 =
(

4̂ 2̂
4̂ 1̂

)
.

134. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
Evaluate the following integral∫ ∞

0

sin (a1x)
x

sin (a2x)
x

e−a3xdx
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where a1, a2, a3 are positive real numbers.

135. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzǎu, Romania.
Calculate

lim
n→∞

( n
√
n!
)Fm+1

(
n
√

(2n− 1)!!
)Fm

(
tan

π n+1
√

(n+ 1)!
4 n
√
n!

− 1

)Fm+2


where Fm is Fibonacci’s sequence.

136. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. We consider f : R → R a function a twice differentiable and
f ′′ continous. Let (an)n≥1 such that ai 6= ai+1 for all i ≥ 1 which have the following
condition

a) limn→∞

(
n+ 1)2f(an+1)− n2f(an)

)
= 0

b)limn→∞
f(an+1)−f(an)

an+1−an
= θ > 0.

i) Find an example of such a function and such a string.
ii) Show that limn→∞ f ′(an) = θ.

137. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology Damascus, Syria and Anastasios Kotronis, Athens, Greece (Jointly). Let n
be a nonnegative integer, m, p be positive integers and x ∈ C. Show that for the
values of n, p,m, x for which the denominators don’t vanish, the following identity
holds:

n∑
k=0

(−1)k

(
n
k

)(
x+n−k
m−k

)
(p+ n− k)

(
x+n−k
p+n−k

) =
n∑

k=0

(−1)k

(
n
k

)(
x

m−k

)
(p+ n− k)

(
x+n

p+n−k

)

=


(−1)n · ( x−p

m−p−n)
p(m

p ) ,m ≥ p

(p−1
m )

(p−m+n)(x−m+n
p−m+n)

,m < p.
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

124. Proposed by Cornel Ioan Vălean, Timiş, Rumania.
Find an expression En(x) whose terms are linearly independent with the other
terms in the integrand such that∣∣∣∣∫ 1

0

( α1

log(x)
+

α2

log2(x)
+ · · ·+ αn

logn(x)
+ En(x)

)
dx

∣∣∣∣ <∞
where αi 6= 0, αi ∈ R.
Then, for a specific En(x) family that fulfills the requirements above, calculate∫ 1

0

( α1

log(x)
+

α2

log2(x)
+ · · ·+ αn

logn(x)
+ En(x)

)
dx

in closed form.
Solution by the proposer.

We note from the beginning that the text of the problem is meant to avoid the
trivial solutions like

En(x) = − α1

log(x)
− α2

log2(x)
− · · · − αn

logn(x)
.

The key observation for getting an expression such that the integral converges is
based upon the terms of the form

αi

(
1− x

log(x)

)i

, i = 1, ..., n.

First observe that

lim
x→0+

(
1− x

log(x)

)i

= 0

and

lim
x→1−

(
1− x

log(x)

)i

= (−1)i.

Also, if we consider f(x) =
(

1− x

log(x)

)i

, i = 1, ..., n, we see immediately that

|f(x)| ≤M,∀x ∈ (0, 1).
Our aim is to choose En(x) such that we obtain terms as above in our integrand,
and one of the ways is

En(x) =
n∑

i=1

αi

(
1− x

log(x)

)i

−
n∑

i=1

αi

logi(x)
.

Adding this expression in our integrand, all reduces to testing for convergence∫ 1

0

n∑
i=1

αi

(
1− x

log(x)

)i

dx
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Changing the order of summation and integration, we get, in absolute value, that∣∣∣∣∣
n∑

i=1

αi

∫ 1

0

(
1− x

log(x)

)i

dx

∣∣∣∣∣
=

∣∣∣∣∣α1

∫ 1

0

1− x

log(x)
dx+ α2

∫ 1

0

(
1− x

log(x)

)2

dx+ · · ·+ αn

∫ 1

0

(
1− x

log(x)

)n

dx

∣∣∣∣∣ <∞
where, as seen above, at the only points where the integrands could have blown
up, near 0 and 1, they approach 0 and (−1)i respectively, and the first part of the
problem is finalized.
An important remark to this part is that we may find infinitely many functions
that on the numerator near 1 they behave like O(1− x), and then we get infinitely
many solutions for the convergence.
To answer the second part of the question, we first calculate the integral∫ 1

0

(
1− x

log(x)

)i

dx.

If making the variable change x = e−y, the integral becomes

(−1)i

∫ ∞
0

e−y

(
1− e−y

y

)i

dy = (−1)i

∫ ∞
0

i∑
j=0

(−1)je−jy

(
i

j

)
e−y

yi
dy

=
(−1)i

Γ(i)

∫ ∞
0

i∑
j=0

(−1)j

(
i

j

)∫ ∞
0

xi−1e−y(x+j+1) dx dy

=
(−1)i

Γ(i)

∫ ∞
0

xi−1
i∑

j=0

(−1)j

(
i

j

)∫ ∞
0

e−y(x+j+1) dy dx

=
(−1)i

Γ(i)

∫ ∞
0

xi−1
i∑

j=0

(−1)j

(
i

j

)
1

x+ j + 1
dx

where above I also used that
1
yi

=
1

Γ(i)

∫ ∞
0

xi−1e−yx dx.

Using the fact that
Γ(i+ 1)

(x+ 1)(x+ 2) · · · (x+ i+ 1)
=

i∑
j=0

(−1)j

(
i

j

)
1

x+ j + 1
, we get

that

(−1)i

Γ(i)

∫ ∞
0

xi−1
i∑

j=0

(−1)j

(
i

j

)
1

x+ j + 1
dx = (−1)ii

∫ ∞
0

xi−1

(x+ 1)(x+ 2) · · · (x+ i+ 1)
dx.

Note that the equality I used above can be proved by writing that

1
(x+ 1)(x+ 2) · · · (x+m)(x+m+ 1)(x+m+ 2) · · · (x+ i+ 1)

=
i∑

j=0

Aj

x+ j + 1
.

Then, to find the coefficient Am, multiply both sides of the equality above by
x+m+ 1, and we get that

1
(x+ 1)(x+ 2) · · · (x+m)(x+m+ 2) · · · (x+ i+ 1)

=
i∑

j=0

Aj
x+m+ 1
x+ j + 1
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where if we let x 7→ −m− 1, we obtain that

(−1)m

m!(i−m)!
=

(−1)m

Γ(i+ 1)

(
i

m

)
= Am

whence Aj =
(−1)j

Γ(i+ 1)

(
i

j

)
.

Alternatively, we can use beta function and write that

Γ(i+ 1)
(x+ 1)(x+ 2) · · · (x+ i+ 1)

=
Γ(x+ 1)Γ(i+ 1)

Γ(x+ i+ 2)
= B(x+ 1, i+ 1)

=
∫ 1

0

yx+1−1(1− y)i+1−1 dy

=
∫ 1

0

yx
i∑

j=0

(−1)j

(
i

j

)
yj dy

=
i∑

j=0

(−1)j

∫ 1

0

(
i

j

)
yx+j dy

i∑
j=0

(−1)j

(
i

j

)
1

x+ j + 1

that shows again that the auxiliary equality I used above is true.
So, we have that

(−1)i

∫ ∞
0

e−y

(
1− e−y

y

)i

dy = (−1)ii

∫ ∞
0

xi−1

(x+ 1)(x+ 2) · · · (x+ i+ 1)
dx

and for calculating the integral in the right-hand side we use again partial fractions,
that is

xi−1

(x+ 1)(x+ 2) · · · (x+ i+ 1)
=

i+1∑
k=1

Bk

x+ k
.

To obtain the value of Bm, we multiply both sides of the equality by x+m, that is

xi−1

(x+ 1)(x+ 2) · · · (x+m− 1)(x+m+ 1) · · · (x+ i+ 1)
=

i+1∑
k=1

Bk
x+m

x+ k

and then we let x 7→ −m that leads to

(−1)i+mmi−1

(m− 1)!(i−m+ 1)!
=

(−1)i+mmi−1

i!
· i!
(m− 1)!(i−m+ 1)!

=
(−1)i+mmi−1

Γ(i+ 1)

(
i

m− 1

)
= Bm.
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Upon replacing m by k, we get that Bk =
(−1)i+kki−1

Γ(i+ 1)

(
i

k − 1

)
. Then, we have

that

(−1)ii

∫ ∞
0

xi−1

(x+ 1)(x+ 2) · · · (x+ i+ 1)
dx =

(−1)i

Γ(i)
lim

s→∞

∫ s

0

i+1∑
k=1

(−1)i+kki−1

(
i

k − 1

)
1

x+ k
dx

=
1

Γ(i)
lim

s→∞

i+1∑
k=1

∫ s

0

(−1)kki−1

(
i

k − 1

)
1

x+ k
dx

=
1

Γ(i)
lim

s→∞

i+1∑
k=1

(−1)kki−1

(
i

k − 1

)
(log(k + s)− log(k)).

Since we have that 1 =
i+1∑
k=2

(−1)kki−1

(
i

k − 1

)
because

0 = lim
x→∞

xi

(x+ 1)(x+ 2) · · · (x+ i+ 1)
= lim

x→∞

i+1∑
k=1

Bkx

x+ k
=

i+1∑
k=1

Bk,

then we get

1
Γ(i)

lim
s→∞

(
i+1∑
k=2

(−1)kki−1

(
i

k − 1

)
(log(k + s)− log(k))−

i+1∑
k=2

(−1)kki−1

(
i

k − 1

)
log(1 + s)

)

=
1

Γ(i)
lim

s→∞

(
i+1∑
k=2

(−1)kki−1

(
i

k − 1

)
(log(k + s)− log(k)− log(1 + s))

)

=
1

Γ(i)

(
i+1∑
k=2

(−1)kki−1

(
i

k − 1

)
lim

s→∞
(log(k + s)− log(k)− log(1 + s))

)

=
1

Γ(i)

i+1∑
k=2

(−1)k+1ki−1

(
i

k − 1

)
log(k).

Hence

α1

∫ 1

0

1− x

log(x)
dx+ α2

∫ 1

0

(
1− x

log(x)

)2

dx+ · · ·+ αn

∫ 1

0

(
1− x

log(x)

)n

dx

=
n∑

i=1

i+1∑
k=2

(−1)k+1αik
i−1

Γ(i)

(
i

k − 1

)
log(k).

Q.E.D.
Editorial comment. The logic behind choosing these En’s is not strong. One
might choose almost anything. The author of the problem should have asked explic-

itly to evaluate the integrals
∫ 1

0

(
1−x
log x

)i

dx which is the aime of these calculations.

125. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. Let
x, y and z be the sides of a triangle and r, R and s be the inradius, circumradius
and the semiperimeter of the triangle respectively. Prove that

1
(x+ y)2

+
1

(x+ z)2
+

1
(y + z)2

≤ r4 + 8r3R+ 124r2R2 + 2r2s2 − 8rRs2 + s4

128r2R2s2
.
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Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The function f : (0,+∞) → R defined by f(t) = 1/t2 is convex, so, by Popoviciu’s
inequality we have

2
3

(
f

(
x+ y

2

)
+ f

(
y + z

2

)
+ f

(
x+ z

2

))
≤ f(x) + f(y) + f(z)

3
+f
(
x+ y + z

3

)
that is

1
(x+ y)2

+
1

(y + z)2
+

1
(x+ z)2

≤ 1
8

(
1
x2

+
1
y2

+
1
z2

)
+

27
8

1
(x+ y + z)2︸ ︷︷ ︸

L

(1)

Now, x+ y + z = 2s and xyz = 4R · area(ABC) = 4Rrs, thus

L =
x2y2 + y2z2 + x2z2 + 108R2r2

128R2r2s2
(2)

Moreover, since

s2r2 = (area(ABC))2 = s(s− x)(s− y)(s− z)

= s(s3 − 2s3 + (xy + yz + xz)s− xyz)

we get
xy + yz + xz = r2 + 4Rr + s2

Thus

x2y2 + y2z2 + x2z2 = (xy + yz + xz)2 − 4xyzs

= (r2 + 4Rr + s2)2 − 16Rrs2

Replacing back in (2) and expanding we get

L =
r4 + 124R2r2 + s4 + 8Rr3 + 8r2s2 − 8Rrs2

128R2r2s2

and the proposed inequality follows from (1).
Solution 2 by Moti Levy, Rehovot, Israel.

Since (x+ y)2 ≥ 4xy, then

1
(x+ y)2

+
1

(y + z)2
+

1
(z + x)2

≤ 1
4

(
1
xy

+
1
yz

+
1
zx

)
=

1
4

2s
xyz

=
1
4

1
2Rr

, (1)

and by Euler’s inequality R ≥ 2r, we get

1
(x+ y)2

+
1

(y + z)2
+

1
(z + x)2

≤ 1
16r2

. (2)

Thus, the original inequality is proved once we show that

1
16r2

≤ r4 + 8r3R+ 124r2R2 + 2r2s2 − 8rRs2 + s4

128r2R2s2
,

or that
8R2s2 + 8rRs2 ≤ r4 + 8r3R+ 124r2R2 + 2r2s2 + s4. (3)
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To this end, we use two well-known inequalities (Bottema et al., Geometric Inequal-
ities, 5.11, page 52, and 5.5 page 49):

s2 ≤ 27r2, (4)

s2 ≥ 3r (4R+ r) . (5)

Applying (4) on the left side of (3),

8R2s2 + 8rRs2 ≤ 216Rr2 (R+ r) .

Applying (5) on the right side of (3),

4r2
(
67R2 + 26Rr + 4r2

)
≤ r4 + 8r3R+ 124r2R2 + 2r2s2 + s4

Now it is straightforward to see that

216Rr2 (R+ r) ≤ 4r2
(
67R2 + 26Rr + 4r2

)
,

follows from Euler’s inequality R ≥ 2r and

54R (R+ r) ≤ 67R2 + 26Rr + 4r2

67R2 + 26Rr + 4r2 − 54R (R+ r) = (R− 2r) (13R− 2r) ≥ 0.

Also solved by Ramya Dutta, Chennai Mathematical Institute (student)
India; Nicusor Zlota, ”Traian Vuia” Technical College, Focsani, Romania
and the proposer.

126. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n− 2 ≥ m ≥ 1 be integers. Calculate∫ ∞

0

xm−1 + xm−2 + · · ·+ x+ 1
xn−1 + xn−2 + · · ·+ x+ 1

dx.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The starting point will be the well-known partial expansion of z 7→ π cot(πz),

π cot(πz) = lim
n→∞

n∑
k=−n

1
z + k

which is valid for z /∈ Z. Now, assume that 0 < x < 1 then
n∑

k=−n

1
x+ k

=
1

x+ n
+

n−1∑
k=0

1
x+ k

−
n∑

k=1

1
k − x

=
1

x+ n
+

n−1∑
k=0

∫ 1

0

tx+k−1dt−
n−1∑
k=0

∫ 1

0

tk−xdt

=
1

x+ n
+
∫ 1

0

(tx−1 − t−x)

(
n−1∑
k=0

tk

)
dt

=
1

x+ n
+
∫ 1

0

tx−1 − t−x

1− t
(1− tn)dt

=
1

x+ n
+
∫ 1

0

tx−1 − t−x

1− t
tndt+

∫ 1

0

tx−1 − t−x

1− t
dt
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letting n tend to infinity we get

π cot(πx) =
∫ 1

0

tx−1 − t−x

1− t
dt

Now Suppose that 0 < x, y < 1 then∫ ∞
0

ty−1 − tx−1

1− t
dt =

∫ 1

0

ty−1 − tx−1

1− t
dt+

∫ ∞
1

ty−1 − tx−1

1− t
dt︸ ︷︷ ︸

t←1/t

=
∫ 1

0

ty−1 − tx−1

1− t
dt−

∫ 1

0

t−y − t−x

1− t
dt

=
∫ 1

0

ty−1 − t−y

1− t
dt−

∫ 1

0

tx−1 − t−x

1− t
dt

= π cot(πy)− π cot(πx)

Considering β > 0 and α > 1 + β and taking x = 1/α, y = (β + 1)/α we get∫ ∞
0

t(β+1)/α−1 − t1/α−1

1− t
dt = π cot

(
π(β + 1)

α

)
− π cot

(π
α

)
Finally, the change of variables t = uα we obtain

α

∫ ∞
0

uβ − 1
1− uα

dt = π cot
(
π(β + 1)

α

)
− π cot

(π
α

)
Or, for all β > 0 and α > β + 1∫ ∞

0

uβ − 1
uα − 1

dt =
π

α

(
cot

π

α
− cot

π(β + 1)
α

)
In particular, taking α = n and β = m integers, we get∫ ∞

0

xm−1 + xm−2 + · · ·+ x+ 1
xn−1 + xn−2 + · · ·+ x+ 1

dx =
π

n

(
cot

π

n
− cot

π(m+ 1)
n

)
which is the announced result.
Solution 2 by Moti Levy, Rehovot, Israel.

Following the footsteps of Victor H. Moll, we prove the definite integral 3.246 in
Gradshteyn and Rhyzik. Let I :=

∫∞
0

1−xm

1−xn x
p−1dx.

Integral representation of the Digamma function is

ψ (s) =
∫ 1

0

1− xs−1

1− x
dx− γ. (6)

By change of variable x = tn,

ψ (s) = n

∫ 1

0

tn−1 − tns−1

1− tn
dt− γ,

ψ (1− s) = n

∫ 1

0

tn−1 − tn−ns−1

1− tn
dt− γ
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1
n

(ψ (1− s)− ψ (s)) =
∫ 1

0

tn−1 − tn−ns−1

1− tn
dt−

∫ 1

0

tn−1 − tns−1

1− tn
dt (7)

=
∫ 1

0

tns−1 − tn−ns−1

1− tn
dt.

Using (7) we obtain the following expressions:∫ 1

0

tp−1 − tn−p−1

1− tn
dt =

1
n

(
ψ
(
1− p

n

)
− ψ

( p
n

))
, (8)∫ 1

0

tm+p−1 − tn−p−m−1

1− tn
dt =

1
n

(
ψ

(
1− m+ p

n

)
− ψ

(
m+ p

n

))
. (9)

Now back to our integral,

I =
∫ 1

0

1− xm

1− xn
xp−1dx+

∫ ∞
1

1− xm

1− xn
xp−1dx.

By change of variable x = 1
t ,∫ ∞

1

xm − 1
xn − 1

xp−1dx =
∫ 1

0

t−m − 1
t−n − 1

t−p+1t−2dt

=
∫ 1

0

tn−m − tn

1− tn
t−p+1t−2dt =

∫ 1

0

tn−m−p−1 − tn−p−1

1− tn
dt

I =
∫ 1

0

1− tm

1− tn
tp−1dt+

∫ 1

0

tn−m−p−1 − tn−p−1

1− tn
dt

=
∫ 1

0

tp−1 − tn−p−1

1− tn
dt−

∫ 1

0

tm+p−1 − tn−m−p−1

1− tn
dt

=
1
n

(
ψ
(
1− p

n

)
− ψ

( p
n

))
− 1
n

(
ψ

(
1− m+ p

n

)
− ψ

(
m+ p

n

))
.

The Reflection Formula for the Digamma function is

ψ (1− s)− ψ (s) = π cot (πs) . (10)∫ ∞
0

1− xm

1− xn
xp−1dx =

π

n

(
cot
( p
n
π
)
− cot

(
m+ p

n
π

))
=
π

n

sin m
n π

sin π
np sin π

n (m+ p)
.

Setting p = 1 in (10), we conclude that∫ ∞
0

xm−1 + xm−2 + · · ·+ x+ 1
xn−1 + xn−2 + · · ·+ x+ 1

dx =
π

n

sin
(

m
n π
)

sin π
n sin

(
m+1

n π
) , n− 2 ≥ m ≥ 1.

Solution 3 by Michel Bataille, Rouen, France.

Let f : [0,∞) → R be the continuous function defined by f(x) = xm−1+xm−2+···+x+1
xn−1+xn−2+···+x+1 .

Then, f(x) = xm−1
xn−1 if x 6= 1 and f(x) ∼ 1

xn−m as x → ∞ (so that
∫∞
1
f(x) dx

exists since n−m ≥ 2). It follows that the required integral is I1 + I2 with

I1 =
∫ 1

0

1− xm

1− xn
dx and I2 =

∫ ∞
1

xm − 1
xn − 1

dx.

To evaluate I1 and I2, we shall use the following lemma:
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Lemma 1.

If a > 0, a+ b > 0, then
∫ 1

0

ta−1(1− tb)
1− t

dt = ψ(a+ b)− ψ(a) (1)

where ψ denotes the digamma function defined for x > 0 by

ψ(x) =
Γ′(x)
Γ(x)

= −γ − 1
x

+
∞∑

k=1

(
1
k
− 1
k + x

)
.

[γ is Euler’s constant.]

Proof.

For all t ∈ (0, 1), ta−1(1−tb)
1−t =

∑∞
n=0(t

n+a−1 − tn+a+b−1) and tn+a−1 − tn+a+b−1

has the same sign as b. From
∞∑

n=0

∫ 1

0

|tn+a−1−tn+a+b−1| dt =
∞∑

n=0

∣∣∣∣∫ 1

0

(tn+a−1 − tn+a+b−1) dt
∣∣∣∣ = ∞∑

n=0

|b|
(n+ a)(n+ a+ b)

<∞

we deduce

J =
∞∑

n=0

∫ 1

0

(tn+a−1 − tn+a+b−1) dt =
∞∑

n=0

(
1

n+ a
− 1
n+ a+ b

)
= ψ(a+ b)− ψ(a).

The proof is complet.
The change of variables x = t1/n yields

I1 =
1
n

∫ 1

0

t
1
n−1(1− tm/n)

1− t
dt =

1
n

(
ψ

(
m+ 1
n

)
− ψ

(
1
n

))
.

The change of variables x = t−1/n gives

I2 =
1
n

∫ 1

0

t
n−m−1

n −1(1− tm/n)
1− t

dt =
1
n

(
ψ

(
1− 1

n

)
− ψ

(
1− m+ 1

n

))
.

Thus,

I1 + I2 =
1
n

(
ψ

(
m+ 1
n

)
− ψ

(
1− m+ 1

n

)
−
(
ψ

(
1
n

)
− ψ

(
1− 1

n

)))
.

But we have ψ(1− x) = ψ(x) + π cot(πx) (0 < x < 1)
(
by logarithmic differenti-

ation of Γ(x)Γ(1− x) = π
sin(πx)

)
, hence

I1 + I2 =
π

n

(
cot
(π
n

)
− cot

(
(m+ 1)π

n

))
=
π

n
·

sin mπ
n(

sin π
n

) (
sin (m+1)π

n

) .
Also solved by Mustafa Samir Khalil (student), Syria; Ramya Dutta,
Chennai Mathematical Institute (student) India and the proposer.

127. Proposed by Serafeim Tsipelis, Ioannina, Greece and Anastasios Kotronis,
Athens, Greece (Jointly). Evaluate

∑+∞
k=1

ζ(2k+1)
(k+1)(2k+1) , where ζ is the Riemann’s

zeta function.
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Solution 1 by Ramya Dutta, Chennai Mathematical Institute (student)
India.
∞∑

k=1

ζ(2k + 1)
(k + 1)(2k + 1)

= 2
∞∑

k=1

∞∑
n=1

1
(2k + 1)(2k + 2)n2k+1

= 2
∞∑

k=1

1
(2k + 1)(2k + 2)

+ 2
∞∑

n=2

∞∑
k=1

1
(2k + 1)(2k + 2)n2k+1

= 2

(
−1

2
+
∞∑

k=1

(−1)k−1

k

)
+ 2

∞∑
n=2

∞∑
k=1

1
(2k + 1)(2k + 2)n2k+1

= log
(

4
e

)
+ 2

∞∑
n=2

∞∑
k=1

1
(2k + 1)(2k + 2)n2k+1

Using,
1
2

log
(

1 + x

1− x

)
= x +

∞∑
k=1

x2k+1

2k + 1
and

1
2

log
(
1− x2

)
= −x

2

2
−
∞∑

k=1

x2k+2

2k + 2
. We can

rewrite the summation,

2
∞∑

n=2

∞∑
k=1

1
(2k + 1)(2k + 2)n2k+1

=
∞∑

n=2

(
log
(

1 + 1
n

1− 1
n

)
− 1
n

+ n log
(

1− 1
n2

))
Consider the partial sum,

N∑
n=2

(
log
(

1 + 1
n

1− 1
n

)
− 1
n

+ n log
(

1− 1
n2

))

=
N∑

n=2

(
log
(
n+ 1
n− 1

)
− 1
n

+ n log
(

1− 1
n2

))

=
N∑

n=2

(
(n+ 1) log (n+ 1) + (n− 1) log (n− 1)− 2n log n− 1

n

)

= (N + 1) log(N + 1)−N logN − 2 log 2−
N∑

n=2

1
n

= 1− 2 log 2 + (N + 1) log
(

1 +
1
N

)
− γ +O

(
1
N

)

where, we used the estimate,
N∑

n=1

1
n

= logN + γ +O

(
1
N

)
,

Thus,
∞∑

k=1

ζ(2k + 1)
(k + 1)(2k + 1)

= lim
N→∞

(N + 1) log
(

1 +
1
N

)
− γ = 1− γ.

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is 1− γ where γ is the Euler’s constant.
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For x ∈ (−1, 1), we define

f(x) = log
1 + x

1− x
+

1
x

log(1− x2)− x

=
(

1 +
1
x

)
log(1 + x) +

(
1
x
− 1
)

log(1− x)− x

Clearly

f(x) = −x+
∞∑

n=0

2
2n+ 1

x2n+1 −
∞∑

n=0

1
n+ 1

x2n+1

=
∞∑

n=1

(
2

2n+ 1
− 1
n+ 1

)
x2n+1

=
∞∑

n=1

1
(n+ 1)(2n+ 1)

x2n+1

Thus, setting x = 1/j for j ≥ 2 and adding we get
∞∑

n=1

ζ(2n+ 1)− 1
(n+ 1)(2n+ 1)

=
∞∑

j=2

f

(
1
j

)
(1)

Now,
n∑

j=2

f

(
1
j

)
=

n∑
j=2

((1 + j) log(1 + j) + (j − 1) log(j − 1)− 2j log j)−
n∑

j=2

1
j

=
n+1∑
j=3

j log j +
n−1∑
j=2

j log j − 2
n∑

j=2

j log j −
n∑

j=2

1
j

= −2 log 2 + (n+ 1) log(n+ 1)− n log n−
n∑

j=2

1
j

= 1− 2 log 2 + n log
(

1 +
1
n

)
+ log(n+ 1)−Hn

where Hn =
∑n

j=1
1
j is the nth harmonic number.

Recalling that lim
n→∞

(Hn − log(n+ 1)) = γ, we conclude that

∞∑
j=2

f

(
1
j

)
= 2− 2 log 2− γ (2)

Finally, note that
m−1∑
n=0

1
(n+ 1)(2n+ 1)

=
m−1∑
n=0

(
2

2n+ 1
− 1
n+ 1

)

=
m−1∑
n=0

(
2

2n+ 1
+

2
2n+ 2

− 2
n+ 1

)
= 2H2m − 2Hm = 2 log 2 +O

(
1
m

)
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Hence
∞∑

n=1

1
(n+ 1)(2n+ 1)

= 2 log 2− 1 (3)

Combining (1), (2) and (3) we get
∞∑

n=1

ζ(2n+ 1)
(n+ 1)(2n+ 1)

= 1− γ

which is the announced result.
Solution 3 by Moti Levy, Rehovot, Israel.

The integral representation of the Zeta function is

ζ (s) =
1

Γ (s)

∫ ∞
0

xs−1

ex − 1
dx.

∞∑
k=1

ζ (2k + 1)
(2k + 1) (k + 1)

=
∞∑

k=1

1
(2k + 1) (k + 1)

1
(2k)!

∫ ∞
0

x2k

ex − 1
dx

After changing summation with integration,
∞∑

k=1

ζ (2k + 1)
(2k + 1) (k + 1)

=
∫ ∞

0

1
ex − 1

∞∑
k=1

x2k

(k + 1) (2k + 1)!
dx.

The Taylor series of hyperbolic sine is sinh (x) =
∑∞

k=0
x2k+1

(2k+1)! .

cosh (x)− 1 =
∫ x

0

sinh (t) dt =
∫ x

0

∞∑
k=0

t2k+1

(2k + 1)!
dt =

∞∑
k=0

∫ x

0

t2k+1

(2k + 1)!
dt

=
∞∑

k=0

x2k+2

(2k + 2) (2k + 1)!
=
x2

2

∞∑
k=0

x2k

(k + 1) (2k + 1)!
=
x2

2
+
x2

2

∞∑
k=1

x2k

(k + 1) (2k + 1)!
.

It follows that
∞∑

k=1

x2k

(k + 1) (2k + 1)!
=

2
x2

(cosh (x)− 1)− 1.

∞∑
k=1

ζ (2k + 1)
(2k + 1) (k + 1)

=
∫ ∞

0

(
2 (cosh (t)− 1)

t2
− 1
)

1
et − 1

dt

=
∫ ∞

0

(
et + e−t − 2

t2
− 1
)

1
et − 1

dt

=
∫ ∞

0

et + e−t − 2
t2 (et − 1)

− 1
et − 1

dt

Now we add and subtract e−t

t to the integrand,
∞∑

k=1

ζ (2k + 1)
(2k + 1) (k + 1)

=
∫ ∞

0

(
et + e−t − 2
t2 (et − 1)

− e−t

t

)
dt+

∫ ∞
0

(
e−t

t
− 1
et − 1

)
dt

The first integral can be simplified∫ ∞
0

(
et + e−t − 2
t2 (et − 1)

− e−t

t

)
dt =

∫ ∞
0

(
1− (t+ 1) e−t

t2

)
dt,
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and by integration by parts∫ ∞
0

(
1− (t+ 1) e−t

t2

)
dt =

∫ ∞
0

(
(t+ 1) e−t − e−t

t

)
dt =

∫ ∞
0

e−tdt = 1.

The second integral
∫∞
0

(
e−t

t − 1
et−1

)
dt is equal to −γ (the Euler’s constant). This

follows from the value of the Digamma function at 1

ψ (1) = −γ,
and from the integral representation of the Digamma function,

ψ (x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt.

We conclude that
∞∑

k=1

ζ (2k + 1)
(k + 1) (2k + 1)

= 1− γ.

Also solved by Michel Bataille, Rouen, France and the proposer.

128. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzǎu, Romania.
Let {an}n≥1, {bn}n≥1 be real sequences with an 6= an+1 and bn 6= bn+1 such that:
limn→∞ an = a, limn→∞ bn = b, limn→∞ n(an+1 − an) = c and limn→∞ n(bn+1 −
bn) = d, where a, b, c, d ∈ R. Let f, g : R → R be differentiable functions with
continuous derivatives. Calculate

lim
n→∞

n(f(an+1)g(bn+1)− f(an)g(bn)).

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

For each n there is αn between an and an+1 such that

f(an+1 − f(an) = (an+1 − an)f ′(αn)

From limn→∞ an = a we conclude that limn→∞ αn = a and consequently

lim
n→∞

n(f(an+1 − f(an)) = cf ′(a) (1)

Similarly, we have
lim

n→∞
n(g(an+1 − g(an)) = dg′(b) (2)

Hence, if ∆n = n (f(an+1)g(bn+1)− f(an)g(bn)) then

∆n = n (g(bn+1)− g(bn)) f(an+1) + n (f(an+1)− f(an)) g(bn)

Therefore,
lim

n→∞
∆n = df(a)g′(b) + cf ′(a)g(b)

which is the desired conclusion.
Solution 2 by Michel Bataille, Rouen, France.

For every positive integer n, we have

n (f(an+1)f(bn+1)− f(an)f(bn)) = n ((f(an+1)− f(an))f(bn+1) + (f(bn+1)− f(bn))f(an)) .

Now, from the Mean Value Theorem, we may write

f(an+1)− f(an) = (an+1 − an)f ′(un), f(bn+1)− f(bn) = (bn+1 − bn)f ′(vn)
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where un (resp. vn) is a real number between an and an+1 (resp. between bn and
bn+1).
We deduce that

n (f(an+1)f(bn+1)− f(an)f(bn)) = n(an+1−an)f ′(un)f(bn+1)+n(bn+1−bn)f ′(vn)f(an) (1).

Since 0 ≤ |un − an| ≤ |an+1 − an| and lim
n→∞

(an+1 − an) = a − a = 0, we see that

lim
n→∞

(un − an) = 0, hence lim
n→∞

un = a. Similarly, lim
n→∞

vn = b.

Since f and f ′ are continuous functions, it follows that

lim
n→∞

f(an) = f(a), lim
n→∞

f(bn+1) = f(b), lim
n→∞

f ′(un) = f ′(a), lim
n→∞

f ′(vn) = f ′(b)

and so

lim
n→∞

n(an+1−an)f ′(un)f(bn+1)+n(bn+1−bn)f ′(vn)f(an) = cf ′(a)f(b)+df(a)f ′(b)

and with (1), we may conclude

lim
n→∞

n (f(an+1)f(bn+1)− f(an)f(bn)) = cf ′(a)f(b) + df ′(b)f(a).

Editorial comment. This a corrected version of the statement of the problem.
129. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. Let f : [−1, 1] → R be a function twice differentiable, with
the following properties:
a) f(−1) = f(1) = 0.
b) f ′′ is continuous on [−1, 1].
Prove that

max{(f(x))2 : x ∈ [−1, 1]} ≤ 1
6

∫ 1

−1

(f ′′(x))2dx.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

Consider K(x, t) = (1−max(x, t))(1 + min(x, t)). Then∫ 1

−1

K(x, t)f ′′(t)dt = (1− x)
∫ x

−1

(1 + t)f ′′(t)dt+ (1 + x)
∫ 1

x

(1− t)f ′′(t)dt

= (1− x)
[
(1 + t)f ′(t)

]x
−1
− (1− x)

∫ x

−1

f ′(t)dt

+ (1 + x)
[
(1− t)f ′(t)

]1
x

+ (1 + x)
∫ 1

x

f ′(t)dt

= −(1− x)f(x)− (1 + x)f(x) = −2f(x)

Thus, by the Cauchy-Schwarz inequality we have

4(f(x))2 ≤
∫ 1

−1

(K(x, t))2dt
∫ 1

−1

(f ′′(t))2dt

But ∫ 1

−1

(K(x, t))2dt = (1− x)2
∫ x

−1

(1 + t)2 + (1 + x)2
∫ 1

x

(1− t)2dt

= (1− x)2
(1 + x)3

3
+ (1 + x)2

(1− x)3

3
=

2
3
(1− x2)2
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Thus

(f(x))2 ≤ 1
6
(1− x2)2

∫ 1

−1

(f ′′(t))2dt

and the desired conclusion follows since (1− x2)2 ≤ 1 for x ∈ [−1, 1].
Solution 2 by Moti Levy, Rehovot, Israel.

If f (x) ≡ 0 on [−1, 1] then the inequality is trivially true. Otherwise, f
′
(−1) < 0

and f
′
(1) > 0.

Now assume that f (x) attains its minimum at −1 < ξ < 1. We make the following
change of variable:

t =
ξ

1− ξ2
x2 + x− ξ

1− ξ2
.

Note that t = 1 when x = 1, t = −1when x = −1 and t = 0 when x = ξ.
The function F (t) := f (x)|x=p(t,ξ) attains its minimum at t = 0, so that dF

dt (0) = 0,

and max
{

(f (x))2 ; x ∈ [−1, 1]
}

= max
{
F 2 (t) ; t ∈ [−1, 1]

}
= F 2 (0) .

In terms of F (t) , the original inequality becomes

1
6

(∫ 1

−1

(
d2F (t)
dt2

)2 1
dp(t,ξ)

dt

dt

)
≥ F 2 (0) . (11)

Let g : [−1, 1] → R, be a twice differentiable function defined as follows:

g (t) =

{
1
2 (1− t) dp(t,ξ)

dt , 0 ≤ t ≤ 1,
1
2 (1 + t) dp(t,ξ)

dt , −1 ≤ t ≤ 0.
(12)

Then g (t) has the following properties:

g (−1) = g (1) = 0, (13)

d

(
g (t) 1

dp(t,ξ)
dt

)
dt

∣∣∣∣∣∣∣∣
t=0+

= −1
2
, (14)

d

(
g (t) 1

dp(t,ξ)
dt

)
dt

∣∣∣∣∣∣∣∣
t=0−

=
1
2
, (15)

∫ 1

−1

(
g (t)

1
dp(t,ξ)

dt

)2

dt =
1
6
. (16)

1
6

(∫ 1

−1

(
d2F (t)
dt2

)2 1
dp(t,ξ)

dt

dt

)
=

∫ 1

−1

(
g (t)

1
·
p (t, ξ)

)2

dt

(∫ 1

−1

(
d2F (t)
dt2

)2 1
dp(t,ξ)

dt

dt

)
By Cauchy-Schwarz inequality∫ 1

−1

(
g (t)

1
·
p (t, ξ)

)2

dt

(∫ 1

−1

(
d2F (t)
dt2

)2 1
dp(t,ξ)

dt

dt

)
≥

(∫ 1

−1

g (t)
1

dp(t,ξ)
dt

d2F (t)
dt2

)2

(17)



459

∫ 1

0

g (t)
1

dp(t,ξ)
dt

d2F (t)
dt2

dt = g (t)
1

dp(t,ξ)
dt

dF (t)
dt

]1

0

−
∫ 1

0

d

(
g (t) 1

dp(t,ξ)
dt

)
dt

dF (t)
dt

dt

= g (1)
1

dp(1,ξ)
dt

dF (1)
dt

−
∫ 1

0

d

(
g (t) 1

dp(t,ξ)
dt

)
dt

dF (t)
dt

dt

=
d

(
g (t) 1

dp(t,ξ)
dt

)
dt

∣∣∣∣∣∣∣∣
t=0

F (0) +
∫ 1

0

d2

(
g (t) 1

dp(t,ξ)
dt

)
dt2

F (t) dt = −F (0)
2

.

Similarly,∫ 0

−1

g (t)
1

dp(t,ξ)
dt

d2F (t)
dt2

dt

= −g (−1)
1
1

dp(−1,ξ)
dt

dF (−1)
dt

−
d

(
g (t) 1

dp(t,ξ)
dt

)
dt

∣∣∣∣∣∣∣∣
t=0

F (0) +
∫ 0

−1

d2

(
g (t) 1

dp(t,ξ)
dt

)
dt2

F (t) dt = −F (0)
2

.

We have shown that ∫ 1

−1

g (t)
1

dp(t,ξ)
dt

d2F (t)
dt2

dt = −F (0) . (18)

The inequality (11) is a consequence of (17) and (18).
Solution 3 by Ramya Dutta, Chennai Mathematical Institute (student)
India.

For x ∈ [−1, 1], integrating by parts,

f(x)− f(−1) =
∫ x

−1

f ′(t) dt = (x+ 1)f ′(x)−
∫ x

−1

(t+ 1)f ′′(t) dt (1)

f(1)− f(x) =
∫ 1

x

f ′(t) dt = (1− x)f ′(x) +
∫ 1

x

(1− t)f ′′(t) dt (2)

Multiplying (1) with (1− x) and (2) with (1 + x) and subtracting,

2f(x) = −(1− x)
∫ x

−1

(1 + t)f ′′(t) dt− (1 + x)
∫ 1

x

(1− t)f ′′(t) dt

= −
∫ 1

−1

φx(t)f ′′(t) dt

where, φx(t) =

{
(1− x)(1 + t) when t ∈ [−1, x)
(1 + x)(1− t) when t ∈ [x, 1]
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Now, φx(t) is continuous in [−1, 1]. Applying Cauchy-Schwarz inequality,

4f2(x) =
(∫ 1

−1

φx(t)f ′′(t) dt
)2

≤
∫ 1

−1

(φx(t))2 dt
∫ 1

−1

(f ′′(t))2 dt

≤ 2
3

∫ 1

−1

(f ′′(t))2 dt

=⇒ 6 max
x∈[−1,1]

(f(x))2 ≤
∫ 1

−1

(f ′′(t))2 dt

Since, for x ∈ [−1, 1],∫ 1

−1

(φx(t))2 dt = (1− x)2
∫ x

−1

(1 + t)2 dt+ (1 + x)2
∫ 1

x

(1− t)2 dt

=
(1− x)2(1 + x)3

3
+

(1 + x)2(1− x)3

3

=
2
3
(
1− x2

)2 ≤ 2
3

Also solved by the proposer.

130. Proposed by Mohammed Aassila, Strasbourg, France. Among the first 2016
positive integers (from 1 to 2016) we underline those which may be represented as
the sum of 5 nonnegative integer powers of 2. Is the set of underlined numbers
larger than that of the nonunderlined ones ?
Solution 1 by Ramya Dutta, Chennai Mathematical Institute (student)
India.

Since, 2016 < 2048 = 211, the binary representation of all integers up to 2016
has at most 12 digits. Integers with 6 or more 1’s in binary representation cannot
be underlined (not representable as sum of 5 non negative integer powers of 2).
Integers with five 1’s in binary representation,
5∑

j=1

2aj with a1 > a2 > a3 > a4 > a5 are underlined, there are
(

12
5

)
such integers

less than 2048. Integers with four 1’s in binary representation,
4∑

j=1

2aj = 2a1−1 + 2a1−1 +
4∑

j=2

2aj with a1 > a2 > a3 > a4 are underlined, there are(
12
4

)
such integers less than 2048. Integers with three 1’s in binary representation,

3∑
j=1

2aj = 2a1−1 + 2a1−1 + 2a2−1 + 2a2−1 + 2a3 with a1 > a2 > a3 are underlined,

there are
(

12
3

)
such integers less than 2048. Integers with two 1’s in binary repre-

sentation,
2∑

j=1

2aj = 2a1−2 + 2a1−2 + 2a1−2 + 2a1−2 + 2a2 with a1 > a2 and a1 ≥ 2 are

underlined, there are
(

12
2

)
−1 (that is excepting 4 = 112 from

(
12
2

)
such integers)

such integers less than 2048.
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Thus, at least
5∑

j=2

(
12
j

)
−1 = 211− 1

2

(
12
6

)
−14 = 1572 integers less than 2048 are

underlined, i.e., at least 1572 − (2048 − 2016) = 1540 integers less than 2016 are

underlined, which clearly exceeds 1008 =
2016

2
. The number of underlined integers

exceed the number of non-underlined ones.
Solution 2 by José M. Pacheco and Ángel Plaza, University of Las Palmas
de Gran Canaria, Spain.

Any sum of 5 powers of 2 is an expression of the form 2k1 + 2k2 + 2k3 + 2k4 + 2k5 .
If the sum cannot be larger than 2016, the available values for the exponents range
from 0 to 10, since 211 = 2048 > 2016. There are two different ways of solving the
problem, depending on whether repetition of the k′is is allowed or not.
a) Repeated exponents allowed.
The largest available integers could be obtained as:

210 + 210 + 210 + 210 + 210 = 5120 (impossible)
29 + 29 + 29 + 29 + 29 = 2560 (impossible)
28 + 28 + 28 + 28 + 28 = 1280 < 2016 (acceptable).

The number of integers N ≤ 1280 which are representable as sum of five powers of
2 is

CR9
5 =

(
9 + 5− 1

5

)
=
(

13
5

)
=

13!
5! 8!

= 1287 > 1008 =
2016

2
.

Therefore, the set of underlined integers is larger than its complementary.
b) Repeated exponents not allowed.
Now we can allow exponents up to 10: The worst case would be 210 + 29 + 28 +
27 + 26 = 1984 < 2016. Therefore, the number of integers N ≤ 1280 which are also
representable as sum of five powers of 2 is

C11
5 =

(
11
5

)
=

11!
5! 6!

= 462 < 1008 =
2016

2
,

and under this assumption, there are fewer underlined integers than not underlined
ones.
Also solved by the proposer.
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——————————————————————————————————-
MATHCONTEST SECTION

——————————————————————————————————-

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
90. Let f and g be two continuous, distinct functions from [0, 1] → (0,+∞) such
that

∫ 1

0
f(x)dx =

∫ 1

0
g(x)dx. Let yn =

∫ 1

0
fn+1(x)
gn(x) dx, for n ≥ 0, natural. Prove that

(yn)n≥1 is an increasing and divergent sequence.

91. Let (an)n≥1 ⊂
(

1
2 , 1
)
. Define the sequence x0 = 0, xn+1 =

an+1 + xn

1 + an+1xn
. Is this

sequence convergent? If yes find the limit.

92. For a positive integer n, define f(n) to be the number of sequences (a1, a2, . . . , ak)
such that a1a2 · · · ak = n where ai ≥ 2 and k ≥ 0 is arbitrary. Also we define
f(1) = 1. Now let α > 1 be the unique real number satisfying

∑∞
n=1

1
nα = 2.

Prove that
(a)

n∑
j=1

f(j) = O(nα)

(b) There is no real number β < α such that
n∑

j=1

f(j) = O(nβ).

93. Let c ≥ 1 be a real number. Let G be an Abelian group and let A ⊂ G be a
finite set satisfying |A+ A| ≤ c|A|, where X + Y := {x+ y|x ∈ X, y ∈ Y } and |Z|
denotes the cardinality of Z. Prove that

|A+A+ · · ·+A︸ ︷︷ ︸
k

| ≤ ck|A|

for every positive integer k.

94. Find all functions f : R → R such that
(f(x + y + z))2 = (f(x))2 + (f(y))2 + (f(z))2 + 2(f(xy) + f(xz) + f(yz)), for all
x, y, z real numbers.
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Solutions

85. Prove that

lim
n→∞

n

(
π

4
− n

∫ 1

0

xn

1 + x2n
dx

)
=
∫ 1

0

f(x)dx

where f(x) = arctan x
x if x ∈ (0, 1] and f(0) = 1.

(Romania National Olympiad 2005)

Solution by Henry Ricardo, New York Math Circle, New York, USA.

We have, making one substitution and integrating by parts,

n

(
π

4
− n

∫ 1

0

xn

1 + x2n
dx

)
xn=y
= n

(
π

4
−
∫ 1

0

y1/n

1 + y2
dy

)
= n

(∫ 1

0

dx

1 + x2
−
∫ 1

0

x1/n

1 + x2
dx

)
= n

∫ 1

0

1− x1/n

1 + x2
dx

= n(1− x1/n) ·
∫ x

0

dt

1 + t2

∣∣∣1
0

+
∫ 1

0

∫ x

0
dt

1+t2

x
· x1/n dx

=
∫ 1

0

∫ x

0
dt

1+t2

x
· x1/n dx.

Let vn : [0, 1] → R be the sequence defined by

vn(x) =

∫ x

0
dt

1+t2

x
· x1/n = x1/n−1

∫ x

0

dt

1 + t2
.

Then we can calculate the limit function as follows:

v(x) = lim
n→∞

vn(x) =


∫ x
0

dt
1+t2

x if x ∈ (0, 1)
0 if x = 0
π
4 if x = 1.

Finally, noting that |
∫ x

0
dt

1+t2 | ≤ x ≤ 1, we use the Bounded Convergence Theorem
to conclude that

lim
n→∞

n

(
π

4
− n

∫ 1

0

xn

1 + x2n
dx

)
= lim

n→∞

∫ 1

0

vn(x) dx =
∫ 1

0

(
lim

n→∞
vn(x)

)
dx

=
∫ 1

0

∫ x

0
dt

1+t2

x
dx =

∫ 1

0

arctanx
x

dx,

where we note that lim
x→0

arctanx
x

= 1.

COMMENT: This is a special case of a result (problem 1.64) proved by Ovidiu
Furdui in his book Limits, Series, and Fractional Part Integrals (Springer, 2013):
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Let f : [0, 1] → R be continuous and g : [0, 1] → R be a continuously differentiable
function. Then (1) L = limn→∞ n

∫ 1

0
xnf(xn)g(x)dx = g(1)

∫ 1

0
f(x)dx and (2)

limn→∞ n
(
n
∫ 1

0
xnf(xn)g(x) dx− L

)
= −(g(1) + g′(1))

∫ 1

0

∫ x
0 f(t)dt

x dx.

Also solved Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria; Florin Stanescu, Serban Cioculescu school,
city Gaesti, jud. Dambovita, Romania; Arkady Alt, San Jose, California,
USA and Michel Bataille, Rouen, France.

86. Define the sequence a0, a1, . . . , inductively by a0 = 1, a1 = 1
2 , and

∀n ≥ 1, an+1 =
na2

n

1 + (n+ 1)an
,

Show that the series
∑∞

k=0
ak+1
ak

converges and determine its value.

(Romania National Olympiad 2001)

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

It is clear that an > 0 for n ≥ 0. Note that for n ≥ 1 we have
an+1

an
= nan − (n+ 1)an+1. (1)

This proves that the sequence {nan}n≥1 is positive decreasing so it must converge
to some nonnegative limit `. If ` > 0 we conclude that

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)an+1

nan
× n

n+ 1
= 1

Taking the limit as n tends to +∞ in (1) leads to the contradiction 1 = 0. Thus
` = 0, that is limn→∞ nan = 0. Now, form (1) we get

m−1∑
n=0

an+1

an
=
a1

a0
+ a1 −mam.

Letting m tend to ∞ we get
∞∑

n=0

an+1

an
= 1.

Solution 2 by Michel Bataille, Rouen, France.

Note that an > 0 for every positive integer n (by induction). Let k be a positive
integer. Then we have

ak+1

ak
=

kak

1 + (k + 1)ak
=
kak(1 + (k + 1)ak)− k(k + 1)a2

k

1 + (k + 1)ak
= kak−(k+1)ak+1 (1)

and for any positive integer K, we may write

K∑
k=0

ak+1

ak
=
a1

a0
+

K∑
k=1

ak+1

ak
=

1
2
+

K∑
k=1

(kak−(k+1)ak+1) =
1
2
+(a1−(K+1)aK+1) = 1−(K+1)aK+1 (2).

Now, from (1), kak − (k + 1)ak+1 > 0 for all k ∈ N, hence the sequence {kak}k≥1

is decreasing. As this sequence is also bounded below (by 0), it is convergent. Let
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` = lim
k→∞

kak. Since ak = 1
k · (kak), we have lim

k→∞
ak = 0 · ` = 0; we also have

lim
k→∞

ak+1
ak

= lim
k→∞

(kak − (k + 1)ak+1) = `− ` = 0. Thus

0 = lim
k→∞

ak+1

ak
= lim

k→∞

kak

1 + ak + kak
=

`

1 + 0 + `
=

`

`+ 1

and so ` = 0. From (2), we may conclude that the series
∞∑

k=0

ak+1
ak

is convergent and

its sum is 1− limK→∞(K + 1)aK+1 = 1.
Also solved by Arkady Alt, San Jose, California, USA.

87. Edited. Let f : [0,∞) → R be a continuous 1-periodic function. For
a strictly increasing and unbounded sequence (xn)n≥0 such that x0 = 0, and
limn→+∞(xn+1 − xn) = 0, we denote r(n) = max{k|xk ≤ n}.

a) Show that lim
n→∞

1
n

r(n)∑
k=1

(xk+1 − xk)f(xk) =
∫ 1

0

f(t)dt.

b) Show that lim
n→∞

1
n

benc∑
k=1

f(ln k)
k

=
∫ 1

0

f(t)dt.

(IMC 2012)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

a) Consider τn = (t0, . . . , tm+1) the subdivision of the interval [0, 1] defined by

t0 = 0, tm+1 = 1, tk = xr(n−1)+k − n+ 1 for 1 ≤ k ≤ m = r(n)− r(n− 1).

Clearly, the step hn of this subdivision satisfies

hn = max{tk+1 − tk : 0 ≤ k ≤ m} ≤ max{xj − xj−1 : j ≥ r(n− 1)}
and the Riemann sum corresponding to this subdivision is

R(f, τn) =
m∑

k=0

(tk+1 − tk)f(tk)

Now, the fact that {xn} is strictly increasing and unbounded implies that {r(n)} is
also strictly increasing and unbounded. Thus the condition limn→+∞(xn+1−xn) =
0 implies that limn→∞ hn = 0. Hence

lim
n→∞

R(f, τn) =
∫ 1

0

f(x)dx.

Moreover,

R(f, τn) =
r(n)∑

j=r(n−1)+1

(xj+1 − xj)f(xj)

+ (xr(n−1)+1 − n+ 1)f(0) + (n− xr(n)+1)f(xr(n))

= An + (xr(n−1)+1 − n+ 1)f(0) + (n− xr(n)+1)f(xr(n))

where

An =
r(n)∑

j=1+r(n−1)

(xj+1 − xj)f(xj). for n ≥ 1.



466

Now, since 0 ≤ n−xr(n) ≤ xr(n)+1−xr(n) we conclude that limn→∞(xr(n)−n) = 0
and the continuity of f at 0 shows that limn→∞ f(xr(n)) = f(0). Therefore

lim
n→∞

An =
∫ 1

0

f(x)dx

Finally, by Cesàro’s lemma we conclude that

lim
n→∞

A1 + · · ·+An

n
=
∫ 1

0

f(x)dx

which is equivalent to a).

Remark. With only the integrability assumption on f , the conclusion of a) is
not correct. For example, consider f the characteristic function of the irrational
numbers (f = IR\Q), which is 1- periodic and integrable on [0, 1]. Moreover, consider
xn =

∑n
k=1 1/k. Clearly f(xk) = 0 for every k, So

lim
n→∞

1
n

r(n)∑
k=0

(xk+1 − xk)f(xk) = 0 6= 1 =
∫ 1

0

f(x)dx

.

b) Applying a) with xn = lnn for n ≥ 1, we see that r(n) = benc, so

lim
n→∞

1
n

benc∑
k=1

ln
(

1 +
1
k

)
f(ln k) =

∫ 1

0

f(t)dt. (1)

But ∣∣∣∣∣∣ 1n
benc∑
k=1

(
1
k
− ln

(
1 +

1
k

))
f(ln k)

∣∣∣∣∣∣ ≤ sup[0,1] |f |
n

∞∑
k=1

∣∣∣∣1k − ln
(

1 +
1
k

)∣∣∣∣
Thus

lim
n→∞

1
n

benc∑
k=1

(
1
k
− ln

(
1 +

1
k

))
f(ln k) = 0. (2)

Adding (1) and (2) we get

lim
n→∞

1
n

benc∑
k=1

f(ln k)
k

=
∫ 1

0

f(t)dt.

Editorial comment: This is Problem 3356 proposed in Crux Mathematicorum
(Sept. 2008). A detailed solution appears in Crux Mathematicorum, 34: No 5,
September 2009, p. 341-3.
Also solved by Michel Bataille, Rouen, France and Stanescu, Serban
Cioculescu school, city Gaesti, jud. Dambovita, Romania.

88. Find all functions f : R+ → R+ such that

(x+ y)f(2yf(x) + f(y)) = x3f(yf(x))

for all x, y ∈ R+.

(BMO-shortlist 2015)



467

Solution by Michel Bataille, Rouen, France.

We show that no such function can exist. Assume that f is a solution. Let us show
that f is injective. To this end, consider x, y > 0 such that f(x) = f(y). From the
equation, we get

(x+ y)f ((2y + 1)f(y)) = x3f (yf(y)) (1).

On the other hand, taking x = y in the equation yields

2f ((2y + 1)f(y)) = y2f (yf(y)) (2).

Combining (1) and (2), we obtain

(x+ y)y2f (yf(y)) = 2x3f (yf(y))

or, since f (yf(y)) > 0, (x + y)y2 = 2x3, that is, (x − y)((x + y)2 + x2) = 0.
Since (x + y)2 + x2 > 0, we must have x = y, as desired. Now, let us take
y =

√
2 in (2): 2f

(
(2
√

2 + 1)f(
√

2)
)

= 2f
(√

2f(
√

2)
)
. Since f is injective, we

have (2
√

2 + 1)f(
√

2) =
√

2f(
√

2), hence f(
√

2) = 0, a contradiction with f(x) > 0
for all x ∈ R+. The conclusion follows.
89. Find all real positive solutions (if any) to

x3 + y3 + z3 = x+ y + z, and

x2 + y2 + z2 = xyz.

(Canada National Olympiad 2005)

Solution by Michel Bataille, Rouen, France.

There is no solution. For the purpose of a contradiction, assume that (x, y, z)
satisfies the two equations and x, y, z > 0. Then, from AM-GM, xyz = x2 + y2 +
z2 ≥ 3 3

√
x2y2z2, hence x3y3z3 ≥ 27x2y2z2 and so xyz ≥ 27. Since x + y + z =

x3 + y3 + z3 ≥ 3xyz, it follows that x+ y + z ≥ 81.
Now, by the Cauchy-Schwarz inequality

3(x2 + y2 + z2) = (1 + 1 + 1)(x2 + y2 + z2) ≥ (x+ y + z)2,

hence we would have

x3 + y3 + z3 − 3xyz = x+ y + z − 3(x2 + y2 + z2) ≤ (x+ y + z)− (x+ y + z)2 < 0

(the last inequality because x+ y+ z ≥ 81 > 1). The obtained inequality x3 + y3 +
z3 − 3xyz < 0 is the sought contradiction since x3 + y3 + z3 ≥ 3xyz by AM-GM.
Also solved by Arkady Alt, San Jose, California, USA and Florin Stanescu,
Serban Cioculescu school, city Gaesti, jud. Dambovita, Romania.
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——————————————————————————————————-

MATHNOTES SECTION
——————————————————————————————————-

Series expansion of a function defined by integral

Anastasios Kotronis

Abstract. In this article we generalize a problem that was proposed by Murray
Klamkin and Andy Liu on College Mathematical Journal and a closely related one
that was discussed on the Art Of Problem Solving forum. We approach the problem
in two ways.

1. Introduction

On January 1992 issue of the College Mathematical Journal (see [1]) Murray Klamkin
and Andy Liu proposed the following problem:

If I(n) =
∫ +∞

1

1
1 + xn+1

dx, n > 0, show that
ln 2
n

< I(n) <
ln 2
n

+
1

4n2
.

An asymptotic estimate of the closely related integral
∫ 1

0
1

1+xn dx was also discussed
on Art Of Problem Solving forum (see [2]). We generalize the above giving a com-
plete expansion of the mentioned integrals, in terms of the Riemann zeta function,
approaching the problem by two ways. On what follows we denote:

A1(t) :=
∫ 1

0

1
1 + xt

dx and A2(t) :=
∫ +∞

1

1
1 + xt

dx; t > 1

and we will show that for t > 1:

A1(t) = 1 +
∑
k≥1

(−1)k (1− 21−k)ζ(k)
tk

and A2(t) =
∑
k≥1

(1− 21−k)ζ(k)
tk

where for the first summation index, (1− 21−k)ζ(k) is interpreted as limk→1+(1−
21−k)ζ(k).

2. Main Results

Theorem. Let

A1(t) :=
∫ 1

0

1
1 + xt

dx and A2(t) :=
∫ +∞

1

1
1 + xt

dx; t > 1.

For t > 1:

A1(t) = 1 +
∑
k≥1

(−1)k (1− 21−k)ζ(k)
tk

and A2(t) =
∑
k≥1

(1− 21−k)ζ(k)
tk

where for the first summation index, (1− 21−k)ζ(k) is interpreted as limk→1+(1−
21−k)ζ(k).
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Proof. On this first approach we expand A1(t) and A2(t) directly:

A1(t) =
∫ 1

0

∑
i≥0

(−1)ixit dx
(a)
=
∑
i≥0

∫ 1

0

(−1)ixit dx =
∑
i≥0

(−1)i

it+ 1
= 1 +

∑
i≥1

(−1)i

it
· 1
1 + 1

it

= 1 +
∑
i≥1

(−1)i

it

∑
k≥0

(−1)k

(it)k
= 1 +

∑
i≥1

∑
k≥1

(−1)i+k−1

(it)k
= 1 +

∑
i≥1

 (−1)i

it
+
∑
k≥2

(−1)i+k−1

(it)k


= 1 +

∑
i≥1

(−1)i

it
+
∑
i≥1

∑
k≥2

(−1)i+k−1

(it)k

(b)
= 1 +

∑
i≥1

(−1)i

it
+
∑
k≥2

∑
i≥1

(−1)i+k−1

(it)k
= 1 +

∑
k≥1

∑
i≥1

(−1)i+k−1

(it)k

= 1 +
∑
k≥1

(−1)k

tk

∑
i≥1

(−1)i−1

ik
= 1− ln 2

t
+
∑
k≥2

(−1)k

tk

∑
i≥1

(−1)i−1

ik

= 1− ln 2
t

+
∑
k≥2

(−1)k

tk

∑
i≥1

1
(2i− 1)k

− 1
(2i)k


= 1− ln 2

t
+
∑
k≥2

(−1)k

tk

∑
i≥1

(
1

(2i− 1)k
+

1
(2i)k

)
− 21−k

∑
i≥1

1
ik


= 1− ln 2

t
+
∑
k≥2

(−1)k (1− 21−k)ζ(k)
tk

where the change of integration and summation order in (a) is justified by the dom-
inated convergence theorem and the change of summation order in (b) is justified
by absolute convergence. Now, for k > 1, since from the monotonicity of xk on
[1,+∞) we have

1
k − 1

=
∫ +∞

1

x−k dx ≤
∑
i≥1

1
ik
≤ 1 +

∫ +∞

1

x−k dt =
k

k − 1
,

which yields

lim
k→1+

(1− 21−k)ζ(k) = lim
k→1+

(1− 21−k)
k − 1

· (k − 1)ζ(k) = ln 2,

we can write

A1(t) = 1 +
∑
k≥1

(−1)k (1− 21−k)ζ(k)
tk

, t > 1

as desired. For A2(t) we perform the change of variables x = 1/y and the procedure
is almost the same. �

Now let us see the second approach of the announced result.

Proof. Here we expand A2(t) directly, but in a somewhat more complicated way
than in the first approach (the same could be done with A1(t)). A1(t) is expanded
indirectly from the expansion of A1(t) +A2(t) which is easier to be found.
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For A1(t) +A2(t), with t > 1 we have:∫ +∞

0

1
1 + xt

dx
u=x/t
====

1
t

∫ +∞

0

u−
1
t

1 + u
du =

1
t
B
(

1− 1
t
,
1
t

)
=

1
t
Γ
(

1− 1
t

)
Γ
(

1
t

)
=
π

t
csc
(π
t

)
=
∑
k≥0

(−1)k+1 2(22k−1 − 1)B2kπ
2k

(2k)!t2k
=
∑
k≥0

2(1− 21−2k)ζ(2k)
t2k

=
∑
k≥0

(
1 + (−1)k

)
(1− 21−k)ζ(k)
tk

= 1 +
∑
k≥1

(
1 + (−1)k

)
(1− 21−k)ζ(k)
tk

where Bk denotes the k−th Bernoulli number, B(x, y),Γ(x) denote the Beta and
Gamma function respectively and we used that

B(x+ y) =
Γ(x)Γ(y)
Γ(x+ y)

,

Γ(1− x)Γ(x) = π csc(πx), 0 < x < 1,

cscx =
∑
k≥0

(−1)k+1 2(22k−1 − 1)B2k

(2k)!
x2k−1, 0 < |x| < π, (see [3])

ζ(2k) = (−1)k+1 B2k(2π)2k

2(2k)!
, k ∈ N∗, ζ(0) = −1

2
(see [4]).

We proceed expanding A2(t) as follows:

A2(t) =
∫ +∞

1

x−t

1 + x−t
dx =

∫ +∞

1

x−t(1− x−t)
1− x−2t

dx
x−2t=y
====

1
2t

∫ 1

0

y−
1
2 ( 1

t +1) − y−
1
2t

1− y
dy

=
1
2t

(∫ 1

0

1− y−
1
2t

1− y
dy −

∫ 1

0

1− y−
1
2 ( 1

t +1)

1− y
dy

)

=
1
2t

(
H− 1

2t
−H− 1

2 ( 1
t +1)

)
=

1
2t

(
Ψ
(

1− 1
2t

)
−Ψ

(
1− 1

2

(
1
t

+ 1
)))

,

since

Hx = γ + Ψ(1 + x) for x > −1,

where Hx is the extension of the Harmonic number to real arguments (see [5]) and
Ψ(x) is the digamma function.
It is also true that

Ψ(1 + x) = −γ +
+∞∑
k=2

(−1)kζ(k)xk−1 for |x| < 1 (see [6]),

so for t > 1 we have
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A2(t) =
1
t

(
+∞∑
k=2

ζ(k)
2k

((
1 +

1
t

)k−1

−
(

1
t

)k−1
))

=
+∞∑
k=2

ζ(k)
(2t)k

(
(t+ 1)k−1 − 1

)
=

+∞∑
k=2

ζ(k)
(2t)k

k−1∑
m=1

(
k − 1
m

)
tm =

+∞∑
k=2

k−1∑
m=1

ζ(k)
2k

(
k − 1
m

)
1

tk−m

=
+∞∑
k=1

t−k
+∞∑
m=1

(
m+ k − 1

m

)
ζ(m+ k)

2m+k
=

+∞∑
k=1

t−k
+∞∑
m=1

+∞∑
`=1

(
m+ k − 1

m

)
1

(2`)m+k

=
+∞∑
k=1

t−k
+∞∑
`=1

+∞∑
m=1

(
m+ k − 1

m

)
1

(2`)m+k
=

+∞∑
k=1

t−k
+∞∑
`=1

1
(2`)k

+∞∑
m=1

(
m+ k − 1

m

)
1

(2`)m

=
+∞∑
k=1

t−k
+∞∑
`=1

1
(2`)k

(
+∞∑
m=0

(
−k
m

)(
− 1

2`

)m

− 1

)
=

+∞∑
k=1

t−k
+∞∑
`=1

1
(2`)k

((
1− 1

2`

)−k

− 1

)

=
+∞∑
k=1

t−k
+∞∑
`=1

(
1

(2`− 1)k
− 1

(2`)k

)
=

+∞∑
k=1

t−k
(
1− 21−kζ(k)

)
,

with the change of the summation order, wherever takes place, being justified by
the constant sign of the summands and the coefficient of t−1 being interpreted as
in the first approach. Now A1(t) is immediately evaluated and we are done. �
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——————————————————————————————————-
JUNIOR PROBLEMS

——————————————————————————————————-

Solutions to the problems stated in this issue should arrive before August 15, 2016.

Proposals
51. Proposed by Valmir Krasniqi, University of Prishtina, Republic of Kosova. Let
0 < x, y, z ≤ 2 such that xyz = 1. Find all real numbers x, y, z such that

3x(4−2y) + 3y(4−2z) + 3z(4−2x) = 27.

52. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud. Dambovita,
Romania. Let a, b, c nonzero real numbers such that a+ b+ c = 0, prove that:

max
{
a

b
+
b

a
,
b

c
+
c

b
,
c

a
+
a

c

}
≤ 2 +

1
8

(
(a− b)(b− c)(c− a)

abc

)2

.

53. Proposed by Mihály Bencze, Braşov, Romania. Let ABC be acute triangle.
Prove that

ma
am

b
bm

c
c ≤ (R+ r)2s

where r,R, s,ma be the inradius, circumradius, semiperimeter and the median of
the triangle respectively.

54. Proposed by Marcel Chiriţă, Bucharest, Romania. Consider a triangle ABC.
Let D be a the midpoint on the median AM and M ∈ BC. Perpendicular on the
midpoint of the segment DM passes through the orthocenter of the triangle ABC.
Prove that ^(BDC) = 90◦.

55. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Let ABC be acute triangle. Let AD be the altitude from
A to BC. Let w1, and w2 be the circles with diameters BD and CD, respectively.
Denote by E the intersection of w1 with AB, and by F the intersection of w2 with
AC. Let G,H be the intersections of the line EF with w1, w2, respectively and their
order in this way E,G,H, F. Let I be the intersection of BG and DE and J the
intersection of CH and DF. Let O be the intersection of IJ and AD. Prove that
O is the circumcenter of the triangle DGH.
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Solutions
46. Proposed by D.M. Bǎtineţu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzǎu, Ro-
mania. Solve in real numbers the equation

1
x− 1

+
2

x− 2
+

3
x− 3

+
4

x− 4
= 2x2 − 5x− 4.

Solution by Michel Bataille, Rouen, France.

We show that the equation has six solutions, namely,

0 ;
5
2

;
5
2

+

√
9 + 4

√
2

2
;

5
2
−
√

9 + 4
√

2
2

;
5
2

+

√
9− 4

√
2

2
;

5
2
−
√

9− 4
√

2
2

.

Let X = x− 2 and Y = X2 −X − 1 = x2 − 5x+ 5. Then, with these notations,

1
x− 1

+
4

x− 4
=

5X + 2
Y − 1

,
2

x− 2
+

3
x− 3

=
5X − 2
Y + 1

, 2x2−5x−4 = 2Y +5X−4

and the equation rewrites as

10XY + 4
Y 2 − 1

= 2Y + 5X − 4

or, after rearranging,

(Y 2 − 2Y − 1)(2Y + 5X) = 0.

Thus, the solutions are obtained by grouping the solutions to 2Y + 5X = 0 and to
Y 2 − 2Y − 1 = 0.
• the equation 2Y + 5X = 0 is 2X2 + 3X − 2 = 0 whose solutions for X are 1

2 and
−2. Recalling that X = x− 2 this provides the solution 5

2 and 0 for x.
• the equation Y 2 − 2Y − 1 = 0 gives Y = 1 +

√
2 or Y = 1 −

√
2, which leads to

the equations X2 − X − (2 +
√

2) = 0 and X2 − X − (2 −
√

2) = 0. We obtain
1±
√

9+4
√

2
2 and 1±

√
9−4
√

2
2 for X. This provides 5±

√
9+4
√

2
2 and 5±

√
9−4
√

2
2 for x.

The announced result follows.
Also solved by Henry Ricardo, New York Math Circle, New York, USA
and the proposer.

47. Proposed by Pham–Thanh Hung, Math. Dept. “Can Tho City” Vietnam. Let
a, b, c be positive real numbers. Prove that(

a

b+ c

)2

+
(

b

c+ a

)2

+
(

c

a+ b

)2

+
10(a+ b− c)(b+ c− a)(c+ a− b)

(a+ b)(b+ c)(c+ a)
≥ 2.

Comment by Michel Bataille, Rouen, France and Ángel Plaza, University
of Las Palmas de Gran Canaria, Spain.

Let L(a, b, c) denote the left-hand side of the inequality. We show that neither the
inequality L(a, b, c) ≥ 2 nor the inequality L(a, b, c) ≤ 2 can hold for all positive
real numbers a, b, c.
First, take a = b = 1 and c = 2. Then a+b−c = 0 so that L(1, 1, 2) = 1

9 + 1
9 +1 < 2
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and the stated inequality is not correct.

Second, take a = 1, b = c = 1
100 . Then

(
a

b+c

)2

= 2500 and

10(a+ b− c)(b+ c− a)(c+ a− b)
(a+ b)(b+ c)(c+ a)

= 10
(

1− 1
101

)2

·
(

1− 100
2

)
> −490

and so L(1, 10−2, 10−2) > 2500−490 > 2. Thus the reverse inequality is not correct
either.
Also solved by Arkady Alt, San Jose, California, USA.

48. Proposed by Titu Zvonaru, Comǎneşti, Romania. Let P be a point on the
hypotenuse BC of the right–angled triangle ABC. If X and Y are the intersections
of AP with the external common tangent lines to the circumcircles of the triangles
ABP and ACP, prove that XY = AP

√
2 if and only if BC = AB

√
2.

Solution by the proposer.

Let Γ1(O1, R1),Γ2(O2, R2) be the circumcircles of triangles ABP and ACP, re-
spectively. The tangent line through X intersects these circles at the points T1, T2.
Using the power of X with respect to the circles Γ1 and Γ1, we deduce that X is
the midpoint of the segment T1T2 (T1X

2 = XA ·XP = T2X
2).

We denote by M the midpoint of AP (hence the midpoint of XY ).
Since, ^(XMO2) = ^(O2T2X) = 90◦, O1M = R1 cosB and O2M = R2 cosC,
applying pithagorean theorem and the Law of sines, we obtain:
XM2 +O2M

2 = O2T
2
2 + T2X

2 ⇒ XM2 = −R2
2 cos2 C +R2

2 + T1T 2
2

4

⇒ 4XM2 = 4R2
2 sin2 C +O1O

2
2 − (R1 −R2)2 ⇒ XY 2 = 4R2

2 sin2 C + (O1M+
O2M)2−(R1−R2)2 ⇒ XY 2 = AP 2R2

1 cos2 C−R2
1+R

2
2 cos2 C−R2

2+2R1R2 cosB cosC
+2R1R2. Since, XY 2 = AP 2

(
1
2 + cos B cos C

2 sin B sin C + 1
2 sin B sin C

)
,

we have
(

AP
XY

)2
= 2 sin B sin C

1+sin B sin C+cos B cos C . Since, ABC is right-angled triangle, we

have sinB sinC = cosB cosC = bc
a2 , then

XY = AP
√

2 ⇔ 2bc
a2+2bc = 1

2 ⇔ b2 + c2 +2bc = 4bc⇔ (b− c)2 = 0 ⇔ BC = AB
√

2.

49. Proposed by Proposed by Armend Sh. Shabani, University of Prishtina, De-
partment of Mathematics, Republic of Kosova. Solve the equation

3 · 5x+1 + 11 · 3x−1 + 5 · 2x + 2x−2 = 2016.

Solution by Michel Bataille, Rouen, France.

We show that the unique solution is x = 3.
Multiplying its both sides by 12, the equation becomes

180 · 5x + 44 · 3x + 63 · 2x = 27 · 33 · 7.

Let f(x) = 180 · 5x + 44 · 3x + 63 · 2x. The function f is strictly increasing on R (as
are the functions x 7→ 5x, x 7→ 3x, x 7→ 2x), hence the equation f(x) = 27 · 33 · 7
has at most one solution. However, it is readily checked that f(3) = 27 ·33 ·7. Thus
3 is the unique solution.

Also solved by Ángel Plaza, University of Las Palmas de Gran Canaria,
Spain; Henry Ricardo, New York Math Circle, New York, USA and the
proposer.
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50. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathe-
matics, Republic of Kosova. Let p be prime number such that p ≡ 7( mod 8).
We define A =

{
1, 2, ..., p−1

2

}
and f(k) =

∣∣∣p ⌊ 2k+p−1
2p

⌋
− 2k−1

∣∣∣ for all k ∈ A and
p−1
2 is prime number, where bxc is greatest integer not greater than x. Prove that
f(A) = A.
Solution by proposer.

First we show that f(A) ∈ A. Since p
⌊

2k+p−1
2p

⌋
− 2k−1 > p

(
2k+p−1

2p − 1
)
− 2k−1 =

−p+1
2 ⇒ p

⌊
2k+p−1

2p

⌋
− 2k−1 ≥ −p+1

2 + 1 = −p−1
2 . Also p

⌊
2k+p−1

2p

⌋
− 2k−1 ≤

p
(

2k+p−1
2p

)
− 2k−1 = p−1

2 , therefore
∣∣∣p ⌊ 2k+p−1

2p

⌋
− 2k−1

∣∣∣ ≤ p−1
2 . It is clear that∣∣∣p ⌊ 2k+p−1

2p

⌋
− 2k−1

∣∣∣ 6= 0 hence f(A) ∈ A. In order to solve the problem it is

enough to show that function is injective. Since p ≡ 7(mod8) we have that 2
p−1
2 ≡(

2
p

)
(modp) ≡ 1(modp). We assume that there exist positive integer t < p−1

2 .
Let t be the smallest such number. It is clear that t 6= 1; we know that for each
s > t such that 2s ≡ 1(modp) we have s is divisible by t and since for s = p−1

2 is
satisfied the condition: p−1

2 is divisible with t, which is not possible since p−1
2 is

prime number. Therefore the smallest number t such that 2t ≡ 1(modp) is t = p−1
2

and thus each two numbers from 20, 21, ...2
p−1
2 −1 have the diffrent reminder when

divide p. Let us denote tk the sequence such that tk ∈
[
−p−1

2 , p−1
2

]
and 2k−1 ≡

tk(modp) and thus we have that
⌊

2k+p−1
2p

⌋
=
⌊

2k−1+ p−1
2

p

⌋
= 2k−1−tk

p therefore

f(k) =
∣∣∣p ⌊ 2k+p−1

2p

⌋
− 2k−1

∣∣∣ = ∣∣∣p( 2k−1−tk

p

)
− 2k−1

∣∣∣ = |tk|. Next we show that f is
injective. Indeed, let a, b ∈ A be positive integers such that f(a) = f(b). We show
that a = b. If a > b then from f(a) = f(b) we have that |ta| = |tb| therefore ta = tb
or ta = −tb. If ta = tb for all different a, b ∈ A we have that 2a−1 6≡ 2b−1(modp)
from where we have ta 6= tb which is contradiction. If ta = −tb then we have that
2a−1 + 2b−1 ≡ 0(modp) ⇒ 2b−1(2a−b + 1) ≡ 0(modp) ⇒ 2a−b ≡ −1(modp) Since
1 ≤ a − b < p−1

2 then 22(a−b) ≡ 1(modp) and since 2(a − b) < p − 1 the only
possibility is 2(a − b) = p−1

2 which is not possible since p−1
2 is odd. Therefore we

have that ta 6= −tb which is contradiction. Therefore f(a) = f(b) ⇒ a = b and this
shows that f(A) = A.
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