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Problems

124. Proposed by Cornel Ioan Vilean, Timis, Rumania. Find an expression E, (z)
whose terms are linearly independent with the other terms in the integrand such
that

< 0

/o (e T o * gt @ )

where «; # 0, o; € R.
Then, for a specific E,,(x) family that fulfills the requirements above, calculate

1
(&3] (0%} (679
+ + cte + + En d
/0 (log(m) log?(z) log" () (1:)) 1:

in closed form.

125. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. Let
x, y and z be the sides of a triangle and r, R and s be the inradius, circumradius
and the semiperimeter of the triangle respectively. Prove that
S SN S rt + 8r3R + 12412 R% + 2r?s% — 8rRs? + s*
(x+y)? (422 (y+2)? 12872 R2 2 '
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126. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n —2 > m > 1 be integers. Calculate
/Oo$m_1+l‘m_2+"~+$+1
0

da.
P T NS T

127. Proposed by Serafeim Tsipelis, loannina, Greece and Anastasios Kotronis,
Athens, Greece (Jointly). Evaluate ZZ:{ %, where ( is the Riemann’s
zeta function.

128. Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzdu, Romania.

Let {an}n>1, {bn}n>1 be real sequences with a,, # an+1 and b, # b,41 such that:
limy, o0 @, = @, limy, 00 by, = bylimy, 00 N(@n41 — an) = cand limy, 00 n(bp1 — by) =
d, where a,b,c,d € R. Let f,g: R — R be differentiable functions with continuous
derivatives R . Calculate limy, oo n(f(@n+1)f(bnt1) — flan)f(by)).

129. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. Let f : [-1,1] — R, a function a twice differentiable, the
following properties:

a) £(~1) = f(1) = 0.

b) f it is integrable and positive on [—1, 1].

Prove that:

I
5 ([ @) 2 max{(£(e)5a € (1,10,

-1
130. Proposed by Mohammed Aassila, Strasbourg, France. Among the first 2016
positive integers (from 1 to 2016) we underline those which may be represented as
the sum of 5 nonnegative integer powers of 2. Is the set of underlined numbers
larger than that of the nonunderlined ones ?
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Solutions

No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

117. Proposed by Cornel Ioan Valean, Timis, Romania. Calculate.
/2 .
/ (Chi(cot? x) + Shi(cot? z)) csc? z e~ ¢ du.
0

where Shi(z) = fow wdt and Chi(z) = v + logz + fx Cosh(t cosh(t)=t 4y

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The answer is 0.
First note that Chi(z) + Shi(z) = Ei(z) the “exponential integral” so that, with the
change of variables ¢t = cot x, the desired integral is

/2 1 0
I=- / Ei(cot? z) csc® x e~ ot T gy — - / Ei(t?) e at (1)
€Jo €Jo

Recall that Ei is defined for real non-zero values of = by

+o0 e U
Ei(z) = —PV/ du

u

—T

that is the Cauchy principal value of the integral. So, for z > 0 we have

—€ ,—u +oo —u

— lim (/ e—du—k/ edu)

e—0+ . u

+o0 e~ U

lim </ du—/ du> —/ —du
e—0t _ o u
lim * 2sinhu du — /
e—0t Jo u . u

* 2sinh oo g—u
/ S udu—/ e—du
0 u z u

1 : +oo _—xt
/ 2 sinh(xt) g — / e
0 t 1 t

We conclude that for x > 0 we have

1 —z?(1—t) _ —z?(1+t) +oo —z?(1+t)
e Eiz?) = [ & ¢ dt — S
t t
0 1

Ei(z)
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Now, using the positivity of the integrands, and Tonelli’s theorem we see that

> 2 1 o0 2 2 dt
/ Ei(z?)e ™ dx :/ (/ (Ca S (1+t))dx> —
0 o \Jo t
(e
1 0 t

o ([ (s ) [ )

where J = [ e~ du. So,

/ h Ei(z%)e " dz = J - lim K(e) (2)
0

e—0t

where K (e) is defined, for 0 < e < 1, by

Looat < dt
K(e) = -
(€) / t/1—t / tvVI+1¢

The change of variables ¢t =

°_in the first integral shows that
s

K(e) /°° ds /°° dt
€) — _
e/(1—¢) SV1+s e tV14+t

e/(1—¢) dt e/(1—¢) 1 dt
B P
) tvitt J. Viti) t
e/(1—¢) dt

. VIFi(VI+i+1)

Therefore, lim, ¢+ K(e) = 0, and from (2) and (1) the announced conclusion fol-
lows.

Solution 2 by Moti Levy, Rehovot, Israel.

+ log(1 —¢).

By change of variable, y = cot? z,

3 2
/ (Chi (cot® z) + Shi (cot® z) ) csc® we™ " “dx
0
1 o0
= |y 2 (Chi(y) + Shi(y)) e Vdy.
2e Jo
From the definitions of the C'hi and Shi functions, for positive real x,

* sinht
t

dt

* cosht — 1
C’hi(m)+Shi(x)=’y+ln:v+/ COSTdH—/
0 0

=~ 41 Ry PN A
=y+Inz+ ; ; t=~+ n:z:—&—k;l@.— i(z).

/ " (Chi (cot ) + Shi (cot? z)) ese? we™ " *di = 2% / " e Bi()e " da
0 0
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For —1 < p < 0, and using the fact [;~a? (Inz)e *dz =T (p+ 1) (p+1),

o0 (e e) 0 ‘,I/.’C
xpEi(x)e*ﬂix:/ 2 | y+Inx + — | e %dx
/0 0 ; kk!
oo [e%S) & e8] karp
= Pe™%(d P (1 —*d —*d
'y/o aPe x—|—/0 2P (Inz)e I+Z/O o€ dz

o0

T(k+p+1
=T+ )+T(p+1)¢(p+1) +Z o )
To evaluate Y -, %, we define the generating function
~D(k+p+1)
f(z):= Z — zF.
k=1 ’
Clearly f (1) = Y72, FEHEE.
IF'(k+p+1) 2 k+p\z*
= =T(p+1) il
fa) =T+ )kz::l“(k—i—l)l“(p—kl)k v+ z:: k

o0

/ 1 1
f (@) =T p+1) ;_:( P)at r<p+1><x(1_x)1+p—x>

f(l‘)=F(p+1)/0z <t(1_1t)1+p_11§>dt

F=re+y | (M— t)dt T(p+1) (% (=p) +7)

[e’e) (o) & xk‘
/0 2P Ei(z)e %dx = /0 xP (7 +Inz+ Z kk') e Tdx
00 o k+p
:’y./o xpe_idx—i—/() 2’ (Inz)e “Jd:r—i—Z/ ol e dx

=L (p+ ) +Tp+DY(@E+1)-TpE+1) @ (=p) +7)
=L(p+1) @ (+1) =t (-p)) =T (p+1)mcot (mp).

For p = —%7 fooo P Ei(z)e "dx = -T (%) T cot (g) =0.
We conclude that

us

2 2
/ (Chi (cot2 x) + Shi (Cot2 x)) cscZ ze” S Ty = 0.
0

Also solved by Albert Stadler, Switzerland and the proposer.

118. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
Compute the following sum

Z ernmlog(m +n)
(m+n)3

m=1n=1



412

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is
Clog®(2) | log(2) #*

1t~ ﬂ(’y—klog(lhr) —12log A)

where + is the Euler-Mascheroni constant, and A is the Glaisher-Kinkelin constant.

Let K, be defined, for m > 1, by

ogx
3

1
The series defining K, is absolutely convergent, and since = +— is decreasing

on [2,+00) we conclude that

] 1
- og(m + 1)

0<(-1)""K, (m L 1

(1)

Thus the series >, mK,, is convergent and we are interested in computing the
sum S =Y *_ mK,,
Now, let S, =37 | me, we have

s, :mzq:l (m(m;L 1 m(mQ— 1)) K.
_q q;l)Kq—Fmi:_Qm(le)(Km = Ko)
RS P SE A
q(q;rl)Kq ;;i (=1™( 77;Ulog( )

> 7110 1 o= (=1)™log(m) 1 o= (=1)"log(m
g Z )g()_iz( ) g()_iz( )™ log(m)

m=2 m=2 m=2
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Now, for U we have

+¢'(2)

But ¢’(2) can be calculated in terms of the other known constants by the formula

2

'(2) = %(7 +log(2m) — 121log A).
Thus 5
U = %(fy + log(4m) — 121log A) (3)

Let us come to V, let

_ log(n) log?®(n) — log®(n — 1)

" n 2
and define
- ~log(n) 1.,
Gm:Zgn:Z n *510gm
n=2 n=2
Clearly

9n = %log2 (1 - i) - (711 +log (1 - i)) log(n) = O (loig”)>

Thus, the series > g, is convergent. It follows that there is a constant £ such that

n

Z logk(k:) _ 1Og;(n) O+ 0(1) (4)
k=2

Now, using (4), for m > 1 we have

2 (1) log(n 2 14+ (=1)")log(n 27 Jog(n
Z( )ng()zz( ( ;)g()_z gn()
n=2 n=2 n=2
" log(2n 27 Jog(n
_ Z:l gfl ) . 2_32 gff )
~ log(2) zm: % | logtm) _ log"m) )

Taking the limit as m tend to +oco we get

V= —% + vlog(2) (5)
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Replacing (3) and (5) in (2) we get

log®(2) | log(2 2
S—— °g4( ) 4y ng( ) _ %(’y +log(4m) — 121og A) ~ 0.0292762

which is the announced result.
Solution 2 by Moti Levy, Rehovot, Israel.
By D. Borwein trick:

adi 1 man mIn (m+n)
mZ::lZ( ) (m+n)

n=1
(SR S S ot )
:;gg( 1)m+nl?mnj_—;n ;mi.é _i:: klnk

k=2m=1 k=2
P S PO

Well known facts from analytic number theory are:
1) The Dirichlet eta function is defined as follows,

k 1

i Re(s) > 0.
=1

2) The derivative of Dirichlet Eta function is

(s = 4 D (D RE =2 2 (9 4 (1217 (s), s £
> (= )klnk—’yln27%1n22 s=1.

3

’

(" - @)

|~

Z Z (—1)mte mln (m —|—3n) _

(m +n)

1 2 1
=3 (712) 1n2771n 2 4g (2) 2 0.0292762.

Solution 3 by Ramya Dutta, Chennai Mathematical Institute (student),
India.

Making the change in variable in the sum, m +n = k:



> mlog(m +n) <= plogk =
(—pymen OB 1) SRy m
22 e T
1 & log k
= IR G
k=2
1 = Cklogk 1 log k

o 1yk—1
For MRe(s) > 1, we have n(s) = Z L = <1 _ ! > ¢(s)

k=1
Differentiating both sides with respect to s leads to:

= log k 1
SR = (1 g ) o) - 35

Thus,

= logk 1, log 2
S-1FEE = Se2) + E¢)

logk =~ log(2k " log(2k — 1
N R e o

k=1 k=1 k=1

=M, 10g2+z
k=1 k=1

log k 2 log k
“2

For Euler-Maclaurin’s formula we have,

1 1
H,=logn+v+ —+0|(—
2n n2

and,

k

k=1

"] 1 1
Z ogk :2log2n+C’—|—(’)<O§Ln>

where, C' is some constant term.
Thus,

log k 1 1 1
z:(—l)’c Oi =log2logn + ylog2 + 3 log?n — 5 log?(2n) + O ( Oi”)
k=1

1 1
=vlog2— =log?2+ 0 ( ogn)
2 n

Combining the results we have:

o

1 n log2 log?2 1 2)log 2
Z (_l)ernm((:f(J_nn_;_g ) — v (;g _ Og4 _ EC/(2) _ C( ) 0og

m,n=1

415
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Also solved by Albert Stadler, Switzerland; Haroun Meghaichi (student),
Algeria; Anastasios Kotronis, Athens, Greece (Jointly) and the proposer.

119. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n > 1 be an integer. Calculate

o0 1 _
/ In" 1’
0

1+
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

dx.

The answer is 4(—1)"(n!)(1 — 27™)((n) where ¢ is the Riemann zeta function.
Let the considered integral be denoted by I,,. Clearly we have

1 _ o) _
[n:/ 111”(1 JU)dar;—l—/ In™ (xl)daz
0 1+z 1 z+1
z—1/x
1 _ 1 _
:/ lnn(l x)dx+/ 121nn(1 x)dx
0 1+z 0o 1+=z
! 1 1—z et —1
/0 ( +x2> n (1+x)dm, T T
o) (et+1)2 " 2675
14+ 7 J (="
[+ etms) cor
> 1 1
:2_1 n —tun
0 [ (et amem)

But, since Y oo_, maz™ ! = ﬁ for |x| < 1, we conclude that

U S
Ate D)2 (Q—et2

2 Z (2m + 1)e2™, t>0,

m=0

Thus

I, = 4(—1)"/ (Z (2m + 1)e<2m+1>ttn> dt
0

m=0
Since the summands are positive functions we can interchange the signs of sum and
integral, so

oo

n 1 > —u,,n
I, =4(-1) mzzo(2m+1)”/o e “u"du
n - 1
=4(-1) (”!)mzz:om
(S )

=4(-1)"(n))(1 —27")¢(n)
‘Which is the desired conclusion.

Solution 2 by Michel Bataille, Rouen, France.
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Let I denote the integral. We show that I = 4(—1)"(1 —27")n!{(n) where ( is the
&)

Riemann function defined by ((s) = > & (s> 1).
k=1

FiI‘St, I = Il + I2 with

! 1—z\\" & z—1\\"
= ((35E)) e ma n= [T (n(55))

The substitutions z = :=% in I; and x =

+Z in I give

1+y 1
1 1
Iny)” Iny)”
11:2/ o) 4 and 12:2/ (ny)"
o (1+y) o (I—-y)
so that )
1+y
I:4/ (Iny)" - ——%5 dy = 4(K — J)
0 (1—y2)?
where

lny ! 2y
K= / dy and J:/ Iny)" - ——= dy.
0 (ny) (1—-y?)?
Since the substltutlon Y= \/ﬂ in J yields J = 27" K, we obtain I = 4(1 —2™")K.

Note that 7— 5z y)2 = Z (k + 1)y* for y € [0, 1), hence

K= / ( (lny) ) dy (1).

Now, we shall use the following result (see a quick proof at the end): if m,k are
integers such that £ > 0 and m > 1, then

/0 2 (Inz)™ do = m (2).

Since

% 1 oo
Z/ (b 1)y* ()" dy = (1) 3 ( k:+1/
k=070 k=0

we may interchange »_ and [ in (1) and obtain

N [ R et gy e
K=y | et any) dy =3+ e = 'Z e = ),

and the claimed result follows.

1 o0
1
(Iny)™* dy = n! E T < 00
k=0(k+1)

Proof of (2). Fix k and let U, fo (Inz)™ dz. The proof is by induction on m.
First, integrating by parts,

L e S T L -1
U, = Inzdr = 1 - dt =
1 /0 " Inz dx [k‘—i—l(nx)h k+1/0 T e

so that (2) holds when m = 1.
As for the induction step, we integrate Uy, (where m > 1) by parts again:

1
m 1

o K+l

okt

E 1 2F(nz)™ 1 de = flUm_l

E+1

Up = [ (mx)m]
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and so (2) holds if U,,_1 = %z(),mfl)'

Solution 3 by Moti Levy, Rehovot, Israel.

1+x
We get rid of the absolute value by splitting the integration range,

1 . oo _
0 1+$ 1 1‘—|—1

By substitution of x = % in the second integral,

1 1
1— 1 1—
In:/ In" Nz + [ —=m" ) dx
0 1+ 0 &2 1+z

By the following substitution,

Let I, := fooo In™ ’ﬂ’ dx.

1-— v 1 -
u=—In x; x:_677 dx:2672du
1+x e v +1 (e=v 4+ 1)
I 2/00” e’ d+2/00” g
= U U U i
" 0 (I1+e v 2 0 (1- e‘“)Q

u 2
0 (ev+1)
After integration by parts

n > 1 n o 1
I,=2(-1) n/ w1 — du+2(-1) n/ u™t du
0 e“—i—l 0 et —1
e e
=4(-1)" net du.
(-1) n/o Ut e du
Now,
er 1 1
e2u —1 e —1 e2u—1]
Hence,

o 1 o 1
I,=4(-1)"n (/ ut du —/ u du)
0 e —1 0 et —1
e 1 1 [ 1
=4(-1)"n / u™! du — — ! dv
0 e'lL _1 2n 0 e/l) _1

1 o 1
=4(-1)"n (1 — ) / u™t du.
2n 0 et —1

An integral representation of the Zeta function is

recs) = [ et

0 e’U J—

1dv, Re(s) > 1.
‘We conclude that
11—z 1

/0 In" Ttz dx(l)n4(12n> n!¢ (n).

Also solved by Ramya Dutta, Chennai Mathematical Institute (stu-
dent)India; Albert Stadler, Switzerland and the proposer.
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120. Proposed by Anastasios Kotronis, Athens, Greece and Haroun Meghaichi
(student), Algiers, Algeria, (Jointly.) (Corrected.) Let I(A) = flA AY/® dg. For
n a non-negative integer compute the following limit, if it exists

ln” A
li k'

where the sum over an empty set of indices is 1nterpreted as zero.

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

t

Let F(t) be defined by F(¢ f et/*dx so that I(A) = F(In A). A simple manipu-

lation shows that
t

t u u t u
F(t)zt/ edu—t[ e} —|—t/ € du
te—t U u te—t te—t U

= (" —1)e! + t(G(t) — G(te™)) (1)

Where G(v f " < du. Since hm te™" = 0 we are interested in the asymptotic

t—oo

expansion of G in the neighborhoods of 0 and +oc.
Now, for small values of v > 0 we have

voou _q 1 u_q Vet _ 1
G(v)zlnv—i—/ c duzlnv—l—/ € du—/ ¢ du
1 u 0 u 0 u

- 1nv+e—n§=:1 n'”m!), with ¢ = Ofle“u—ldu.
Thus, for ¢t > 0 we have
tn+1€7nt
tG(te™t) = —t> +tlogt + £t — nzl SO (2)
Also, since
" N e 1),

we see that for ¢t > 0 we have

n

G(t) = Ztkﬂe —eZk'—i—/ Z:—“) e“du (3)

k=0
But, ift>521vvehave

—du —/ —du—&—/ —du
< ot et b met
— 1 du + um . + s um+1 du

t ot
§es+et/u+1du<e +—
S
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So, choosing s = t/2, we see that, in the neighborhood +oco and for every positive
integer m we have
t

u t
£ du=0 (e)
1 um tm
So, from (3) we obtain the following asymptotic expansion of G the neighborhood
+00

" k! et

k=0

t

to (2)), but in the neighborhood +oco, t* = o (F) for any m. So from the above

we conclude that for large ¢, and any n > 0 we have

Clearly, for large t, we have (e —1)et) = O(t), and tG(te~*) = O(t2) (according

Or, in terms of I we have, for every non-negative integer n and large A,

" KA A
14)=2, mia " © (lnr”r1 A) '

k=0

This proves that

n n—1 '
Vn>0,  lim 2 A(I(A)—Zk'A>—n!

— 00 k
A A o In" A

which is the desired conclusion.

Also solved by Albert Stadler Switzerland; Moti Levy, Rehovot, Israel;
Ramya Dutta, Chennai Mathematical Institute (student), India and the
proposers.

121. Proposed by  D.M. Batinefu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzdu,
Romania. Le m > 0, Ly be k-th Lucas number and I" : (0,00) — (0,00) be the
Gamma function. Calculate

i/ (n+1)!
lim r(f :/an) dz.
n

n—oo v/l

Solution 1 by Haroun Meghaichi (student), Algeria.

The answer is él" (%), where ¢ is the golden ratio. we’ll use the following lemma:
Let f : [a,b] — R continuous, and (xy,)n, (yn)n two convergent sequences of [a, b]
that have the same limit «, then

Yn

f(t) dt = f(a)(yn - fn) + O(yn - xn)

Tn
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Proof. Let € > 0, then 3§ > 0, such that |f(t) — f(a)| < &, whenever |z — «| < 4.
since &, y, — «, then there is ng € N such that z,,y, €la — J§,a + 0,[ wherever
n > ng. Therefore

"R dt - F(0)(gn — )

Tn

Yn
< / F(8) = F(@)] dt < ey — 2

n

Note that the given integral equals

"+1/7("+1)’7\1/L7m
L= 1 / T(t) dt,

n Lm
n

Vnl n Lm
n n

this comes directly from the sub ¢ = % {/L, let x,,,y, be the lower, upper bound

of the last integral respectively, then z,,,y, — @™e ™!, since

VI = (0" + (=) ™)™ = o™ (14 (=) ) ™" = o £ O(p7).
et

Yl —
2 — e~!, and thus

"/ (n+1)! _n+ 1 "/ (n+1)! n—oo -1

n n n+1

and

now, note that by Stolz theorem

V%(yn — ) = (”*{/m— \/ﬁ) e

By the lemma we get

h—-v%ﬁ<F(ﬁ?>@n%J+0@nx@>—if<ﬁ?)+oﬂ)

which proves that the limit equals él" (%)

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

Let I(n) be defined by

ntl/(n+1)!

I(n) :/ r(f :/Lm) dz
n!

A simple change of variables shows that

I(n) = an /b () da = an(F(cn) — F(by))

n

with

! "/ 1)! t
S R Y7 R A Ul i LYy y TR / I(z) da
, - '
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Using Stirling asymptotic expansion we have
Yl 101 log (2 In?
n! +nn+0g(7r)+0<nn>

2en 2en

n e n2
e+ 1 Inn 2+ log(2m) In®n
— =4+ — 4+ ——240 (2)
n e 2en 2en n?

Now, since L, = @™ + (—1)"p~™ with ¢ = 1+2\/5, we see immediately that

1
Vi = (140 ()

So, combining the above results we see that

om0 (i)

1 Inn In(27) Inn
LY (il 4
7 <e+26n+ 26n>+0(n2> @
(1 Inn  24In(2m) In’n
=Y <e+2enJr 2en )+O< n? 5)

It follows that

m m 2
Fby) = F A S 1nn—|—ln(27r)(pm+0 In“n
e e 2en n?
(w:) L (cpm) 1nn+2+1n(2w)wm+0 (1n2n)

2en n?

F(ey) — F(by) =T (“"m> L <hi2”>

en
Thus,

I(n) = an(F(cn) — F(bn)) = : <‘Pm> o <1n2n>

e e n
1

That is lim I(n) = ~I' (¢™e™!), which is the desired conclusion.
n—oo e

Also solved by Albert Stadler, Switzerland; Nicusor Zlota, Traian Vuia
Technical College, Focsani, Romania; Angel Plaza, Spain; Ramya Dutta,
Chennai Mathematical Institute (student), India; Moti Levy, Rehovot,
Israel and the proposers.

122. Proposed by Mohammed Aassila, Strasbourg, France. Choose 321 different
points inside a unit cube. Prove that 4 of these points lie inside some sphere of
4

radius 55+

Solution by the proposer.

Let n and k be positive integers, let r be a positive real number, and suppose
there are n points Xi, Xo,---, X, in the unit cube such that no k + 1 of them
belong to a ball of radius r. Let B; be the ball of radius r centered at X; and
B = BiUByU---UB,. No point belongs to & 4+ 1 of the B;’s. For if, say,
P belonged to By N Ba N --- N Bgt1, then X1, Xo, ..., Xx+1 would all belong to
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the ball of radius r centered at P, contradicting the hypothesis. Hence we have
kE|B| > |Bi| + |Bz| + -+ |By/, that is :

4
Bl = gmor®- (1)

where |B;| denotes the volume of the ball B;. On the other hand, since B is
contained in the “rounded cube” consisting of all points at distance at most r from
the unit cube, we have :

4
|B| < 1+67"+37rr2+§7rr3. (2)
Thus, combining (1) and (2) gives :
3 9 9
< k —+1).
"= (4777“3 + 2712 + 4r + )

For k = 3 and r = 0.1739, we get n < 320.0988..., so for 321 points inside a unit
cube, 4 of them will lie inside some sphere of radius 0.1739 < %.

Also solved by Ramya Dutta, Chennai Mathematical Institute (student),
India.

123. Proposed by Sava Grozdev and Deko Dekov (Jointly), Bulgaria. Recall the
definition of a hexyl triangle, See [1]. Given a triangle ABC and the Excentral
triangle PaPbPc of AABC. Let Ka be the point in which the perpendicular to
AB through Pb meets the perpendicular to AC through Pc. Similarly define Kb
and Kc. Then triangle KaKbKc is known as the Hexyl Triangle. Prove that the
Hexyl triangle is similar to the Pedal Triangle of the inverse of the Incenter in the
Circumcircle. The reader may find a number of theorems without proofs about the
hexyl triangle in [2]. The reader could find the proofs of these theorems and submit
them for publication. This problem and the theorems in [2] are discovered by the
computer program “Discoverer”, created by the authors.
REFERENCES
[1]: E. W. Weisstein, MathWorld - A Wolfram Web Resource, http://mathworld.
wolfram.com/HexylTriangle.html
[2]: S. Grozdev and D, Dekov, Computer-Discovered Mathematics: Hexyl-

Anticevian Triangles, www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-
Triangles-pp.60-69.pdf

Solution by the proposers.

We use barycentric coordinates. For a survey on barycentric coordinates see [2].
Given triangle ABC with side lengths a = BC, b = C A and ¢ = AB. The barycen-
tric coordinates of the inverse of the Incenter in the Circumcircle are given in [2],
article X(36). Given a point P, the barycentric coordinates of the pedal triangle
of P are given in [2], 4.4, page 50. By using these formulas we easily obtain the
barycentric coordinates of the pedal triangle PaPbPc of the inverse of the Incenter
in the Circumcircle as follows:

Pa = (0,(a+b—c)(a® +b* — c* —2ab+be), (a+ ¢ — b)(a® + ¢* — b* — 2ac + be)),
Pb=((a+b—c)a®+b*—c* —2ab+ac),0,(b+c—a)(b* + * — a® — 2bc + ac))
Pc=((a+c—0b)(a*+c* —b* —2ac+ab),(b+c—a)(b® + ¢ — a® — 2bc + ab),0).


http://mathworld.wolfram.com/HexylTriangle.html
http://mathworld.wolfram.com/HexylTriangle.html
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
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We calculate the side lengths of triangle PaPbPc by using the distance formula
(See [2], 7.1) as follows. Denote

Q= Va3 + b3+ 3 — ab? — ba? — be® — cb? — ac® — ca® + 3abe

Then we have

(b+c—a)\/ala+b—c)(a+c—b)

al = |PbPe| = - |
bl — [PePal = 4 C = b)\/b<b;ch— Jarb—)
et = papy| = LIV et el

The side lengths of the Hexyl triangle are given in [1], Theorem 5.2, as follows:

2a+/be

a2 = |KbKc| = )
Vie+a—b)a+b—rc)
2b+/

b2 = |KcKa| = byea )
Via+b—rc)(b+c—a)
2 = |KaKb| = 2cvab .
V(b +c—a)(ct+a—0b)

We denote . ” )

a c
ka_&v kb_biza kc—a

Now it is easy to see that k, = k;, and k, = k.. Hence k, = ky = k., that is, the
lengths of corresponding sides of the triangles are proportional. Denote by k the
ratio of similarity. Then

(a+b—c)b+c—a)(ct+a—D)
4QV abe

REFERENCES

k=ko=ky=k.=

[1] S. Grozdev and D. Dekov, Computer Discovered Mathematics: Hexyl-Anticevian Triangles,
International Journal of Computer Discovered Mathematics, 2015, vol. 0, no 0, 60-69. http://
www. journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf.

[2] C. Kimberling, Encyclopedia of Triangle Centers - ETC, http://faculty.evansville.edu/
ck6/encyclopedia/ETC.htmll

[3] P. Yiu, Introduction to the Geometry of the Triangle, 2001, new version of 2013, http:
//math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf

Also solved Michel Bataille, Rouen, France.


http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf
http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf
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MATHCONTEST SECTION

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals

1 .n 1
T T
I T o -5 )=
i o (§on [ ) = [ s
where f(z) = 2<tant if o ¢ (0,1] and f(0) = 1.

85. Prove that

86. Define the sequence ag,aq,... inductively by ag =1, a1 = %, and

2
na?

| B— Vn > 1.

Unt1 =7 +(n+1a,’ "=

oo
a
Show that the series g kil converges and determine its value.
a
k=0

87. Let f : [0,00) — R be a periodical function, with period 1, integrable on
[0,1]. For a strictly increasing and unbounded sequence (z,)n>0, To = 0, with
limy, oo (Tn41 — ) = 0, we denote r(n) = max{k | z < n}.

a) Show that:

1 r(n) 1
Jim =S (=) @) = [ f@)da
k=1
b) Show that:

r(n)
lim izf(lnk) =/1f(x)dx
0

n—0o0 lnn ki
k=1

88. Find all functions f : RT — R¥ such that (z+y)f(2yf(x)+f(y)) = 22 f(yf(x))
for all z,y € RT.

89. Find all real positive solutions (if any) to
B+ +22=x+y+2z and
2+ y2 +22 = TYZ.
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Solutions

80. Given is the square matrix A = (ay,;) of order n > 2 with elements ay,; =
(k —1)3. Find the rank of the matrix.

(BULGARIAN NATTIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. The answer is 2 for n = 2,3 and 4 for n > 4.

Indeed, consider the matrices B,, € M, x4(R) and D € My,4(R) defined as follows

11 1 1
0 0 0 -1 1 2 22 23
_ 100 3 0 _ |1 3 32 33

D=10 30 o Bo=1" """
1 0 0 0

1 n n® nd

It is just a verification that A = B, DBI. Now, since rank(B,,) = min(n,4) we
conclude that rank(A) < min(n,4).
e for n > 4 the matrix B4DB4T is an <nvertible 4 x 4 sub-matrix of A so
rank(A) > 4, and consequently rank(A) = 4 in this case.

e for n =2 we have A = 0 1] so rank(A) = 2 in this case.

1 0
0 -1 -8

o forn=3wehave A= |1 0 —1| and rank(A) = 2 in this case also.O
8 1 0

81. Find the sum

oo

1
D T
nl(n*+n?+1)

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. The answer is e/2.
Note that for n > 0 we have
2 _ 1 n n n—1
nlnt+n24+1)  (+1)! m+D(n(n+1)+1) nal((n—1n+1)
Thus,

= 2
E _— —e—-1+1=c¢
V(4 2
— nl(nt +n?+1)
and the announced conclusion follows. O
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Also solved by Rafik Zeraoulia, Algeria; Michel Bataille, Rouen, France
and Arkady Alt, San Jose, California, USA.

2 2

82. In descartes co-ordinate system with origin O given are the ellipse ——!—% =1
and a point My on it. If M is a point on the ellipse, compute the maximal area of

the triangle OMyM
(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

ac.ost] of the
bsint

ellipse. and suppose that My = M(tg) for some t; € R. Now the area A(t) of
AOMyM (t) is given by

The answer is ab/2. Consider the parametrization t — M (t) = [

1 — 1 acosty acost
A = 5 det(OMo,OM(t))‘ =3 ‘det [bsinto bsint

ab, .
” = §|Sm(t —to)|

Thus the maximum value of A(t) is ab/2 and it is attained when ¢ = to + 7.

Solution 2 by Arkady Alt, San Jose, California, USA.

22 2
Let My (zo,y0) and M (z,y) Then — + Zg =1, =) + 2—2 = 1 and by Cauchy
Inequality
1 1
we have [OMyM] = ‘d t <x0 ;/0)‘ =3 |zyo — xoy| = 3 ’% -ayo + % . (—bxo)‘ <

1 ab [x2 Y2 ab
3 7_,_7 Va2yd +b2y3 = = ¢a2y§+b2y8:31/;g+b%:?_

Since equality in Cauchy Inequality occurs iff (f %) = k (ayo, —bzp) then
x = ka’yo,y = —kb?x( then by replacing (z,y) in x——l-bj = 1 with (ka®yo, —kb%z¢)
1
WeobtainkQ(a2y§+b2x(2))—l = k? 2b2< +Zg>:1 = k:fb =
a
ayo bxo
€r= — = ——
b’ a )
b 2 , LW by 2 2
. ([ aYo o =Y b2 a? Yo . %o _
Since for (z,y) = > o we have ¥+b72_ 2 = b—Q—i—a—z—l
q 1| | 1 |ayo bzg ab |y} 2 ab
and — |zyo —zoyl == |— ‘yo—xo- | —— || == |5+ 5| = =
B Yo oy 217 Yo 0 a 5 | p2 D)
b
then max [OMoM] = %.

Also solved by Michel Bataille, Rouen, France.

83. Let P be the sum of all 2 x 2 matrices whose elements are the integers 0, 1, 2
and 3, without repetition. Find the matrices:

a) S =P
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b) 52015;

c) §2015 _ Af2015 where M = (\}5 _1/3)

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Michel Bataille, Rouen, France.

a) The matrix P is the sum of 4! = 24 matrices (as many as permutations of
0,1,2,3). The (1,1) entry is O (resp. 1, resp. 2, resp. 3) in 3! = 6 of them. Hence
the (1,1) entry of Pis 6 Xx04+6x 146 x 2+ 6 x 3 = 36. In the same way, the other
entries of P equal 36. It follows that P = 36J where J = (i 1) and so S = J.

b) By induction, we readily find that J» = 2"~1J for every positive integer n. It
follows that

362015 362015

c) It is easily checked that the matrix M satisfies M3 = —8I where I is the 2 x 2
unit matrix. As a result,

M2015 — (Af3)87L. A2 = (—8[)STL. M2 = 220132,

-2 =23
. 2 _
Thus, using M~ = (2\/§ 9 >=

0 1—-v3
§2015 _ pr2015 _ 92013 (9 7 | pr2) _ 92014 )

2015 L pooss 1 2015 | 72015 _ 92014 22014 92014
S = geo ! - - 36 -J =27 = 92014 92014 | -

84. The function f(z) has a derivative in the interval [0,2015] and f(0) = f(2015) =
0. Prove the existence of such numbers z,y € (0,2015), that f'(x) = 2015f(z) and

f(y) =2015f(y).

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Henry Ricardo, New York Math Circle, USA.

Consider the function g¢(t) = e=2°1%t f(¢). Then we have ¢(0) = g(2015) = 0. By
Rolle’s theorem, there exists z € (0,2015) such that

0 = g'(z) = e (f/(x) - 2015f(x)),
which implies that f/(z) = 2015f(x).

Similarly, the function h(t) = e~ 2015 f (t) satisfies the hypotheses of Rolle’s theorem,
and so there exists y € (0,2015) such that

0 = W) = e (1) - I
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Consequently, f(y) = 2015f'(y).

Comment. More generally, if f is differentiable on [a,b] and f(a) = f(b) = 0,
then for any real number A there is an = € (a,b) such that Af(z) + f/(x) = 0.

Proof. The function P(t) = e* f(t),t € [a, b], satisfies the conditions of Rolle’s the-
orem. Hence there is a number = € (a, b) such that 0 = P'(x) = (\f(z) + f'(z)) e*.
Consequently, A\f(x) + f'(z) = 0.

Also solved by Michel Bataille, Rouen, France.
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MATHNOTES SECTION

A Generalization of the Griffiths’ theorem

for conics with intersecting diameters

SAvA GROZDEV, VESELIN NENKOV

Abstract. The paper considers a generalization of the Griffiths’ theorem from the
geometry of the triangle.

Keywords: Triangle, conic, pedal circle, pedal curve, Feuerbach configuration,
Euler curve.

1. INTRODUCTION

The present paper generalizes a remarkable fact from the geometry of the triangle,
known as Griffiths’ theorem. The theorem itself is connected with the notion of
a pedal circle of a point with respect to a given ANABC. Remind that if a point
P is not on the circumcircle of AABC, then the pedal circle of P with respect to
AABC' is the circle, determined by the feet of the perpendiculars from P to the
lines BC,C'A and AB. The GRIFFITHS’ THEOREM says: When P mowves along
a line through the circumcenter of NABC, then the pedal circle of P with respect to
AABC passes through a fized point (the Griffiths’ point) on the nine-point circle
(the Euler circle). Two proofs of the Griffiths’ theorem with complex could be
found in [T1] and [6], while a synthetic proof is included in [5]. The generalization
in the present paper is connected with the generalization of certain notions which
are recalled in the sequel.

2. GENERALIZATION OF SOME NOTIONS FROM THE GEOMETRY OF THE
TRIANGLE

Barycentric coordinates with respect to a given AABC will be used, namely A(1,0,0),
B(0,1,0) and C(0,0,1). The midpoints of the sides BC, C'A and AB are M,/(0, %, %),
Mb(%7 0, %) and Mc(%, %, 0), respectively. Instead of the circumcircle of AABC con-
sider an arbitrary circumscribed conic k(O) with center O(zg, Yo, 20), (To+Yyo+20 =
1) . As shown in [§] and [I], the points on the conic are described by the equation:

(1) k(O) : (1 — 2x0)zoyz + (1 — 2y0)yozx + (1 — 22) 207y = 0.

Four special points from the AABC plane are connected with the center O, see [9],
[10].

If I(xr,yr,21)(xr +yr + zr = 1) is one of them, than the other three determine a
harmonic triangle of I [12]. The points are presented by

xr yr 2r T Yr 21
IA - 3 ) 7IB y T ) )
1—2.%'[ 1—2{1,‘] ].—QLU[ 1—2y[ 1—2y[ 1—2y[

Ty Yr 27
IC ) s .
<1—2Z] 1—221 1—221)
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Note that I, [4, Ip and I are centers of conics k(I), k(14), k(Ip) and k(I¢), respec-

tively, which are inscribed in AABC' and are homothetic to k£(O) [I0]. A connection
between the coordinates of O and I is shown in [9], i.e.:

(1 -2z — 2yrzr)?
(1 — QII)(l — 2y1)(1 — 22[),

o =

B (1 —2y; — 2z121)y?
(2) Yo = 9
(1 — 2.’17[)(1 — 2y1)(1 — 22[)
(1 — 227 — 2xyr)2?
(1 — 21}[)(1 — 2y1)(1 — 22[) ’
Using (1) and (2), another writing of the equation of k(O) is possible:
(3) E(O): 22yz +ylzx + 222y =0
Let G be the gravity center of AABC. The center O determines the point H(1 —

2x0,1 — 2y, 1 — 22p) uniquely, which comes from the vector equation CT?I = %G.O)
[7, 1. If H, = AHNBC, H, = BHNCA, and H. = CHNAB, then the six points
Mgy, My, M., H,, Hy, H. and the midpoints of the segments AH, BH and CH (nine
points totally) belong to a conic €, which is a generalization of the Euler circle of
AABC'. This conic is called to be Fuler curve of the point H with respect to NABC
[7, [. Additionally, we will say that € is the Fuler curve of AABC, associated
to k(O). As shown in [I], the equation of Q could be written in the following way:

(4)  Q: (1= 2y0)(1 = 220)a” + (1 — 220) (1 — 2z0)y” + (1 — 220)(1 — 2y0)2>
—2(1 — 2x0)xoyz — 2(1 — 2yo)yozx — 2(1 — 220)z0zy =0
Rewrite (4) in the form:

zZ0 —

(4" Q:4(1 = 2z0)zoyz + 4(1 — 2yo)yozx + 4(1 — 220) 202y
— (1T = 2yo)(1 —2z0)x + (1 — 220) (1 — 2x0)y + (1 — 220) (1 — 2y0)Z]
(t+y+2)=0

Substitute the coordinates O from (2) and (4'), to obtain the equation of € in the
form:

6 0 43z + e + o)

—[(1 =2z — 2yrzr)z + (1 — 2yr — 2zrxp)y + (1 — 221 — 227y1)7]

(x4+y+2) =0

The curve 2 touches the inscribed curves k(I), k(14), k(Ip) and k(I¢), see [9]. For
this reason we say that the curves k(O), k(I).k(I4),k(Ig), k(I¢) and 2 belong to
a Feuerbach configuration. Additionally, we say that Q is an Euler curve of the
Feuerbach configuration.
Let P(zp,yp,2p)(xp + yp + zp = 1) be a point in the plane of AABC, while
the lines pg, pp and p. be parallel to OM,, OM, and OM,, respectively and P, =
paNBC, P, = p,NCAand P, = p.NAB. If P € k(O), see [7], the points P,, P, and
P, are collinear lying on the line s,, which is called Simson line of P with respect
to k(O). If P ¢ k(O), then the point Q(zq,yq, 2¢) is determined uniquely and its
coordinates are:

2 2
T7Yypzp Yyizpxp
(6) ! Vo =" 2

2
27TpYyp
TQ = ==

I(P) 9(P) "% TI(P)
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where
(7) O(P) = z7ypzp + yizpTp + 21T PYP.

The point @ is called to be conjugated to P with respect to the Feuerbach configu-
ration under consideration [2]. Let the lines ¢, gy and g. be parallel to OM,, OM,
and OM,, respectively, and @, = ¢, N BC, Qp, = gqcbN CA and Q. = ¢, N AB.
Then the points P,, Py, P, Q4, @y and Q. belong to a conic 7p, which is called to
be pedal curve of the points P and @ with respect to the Feuerbach configuration
or with respect to k(O) [2]. As shown in the last paper, the equation of the pedal
curve wp is of the form:

(8) 49(P)(z2yz + yize + 23xy) — (a112 + axy + aszz)(z +y+2) =0
al = [(1 —2x; —2yrzr)yp + Zy?ZP] [(1 —2x; —2yrzr)zp + Zz?yp] Tp,
Qg = [(1 —2y; — 2zjxp)zp + ZZ?xp] [(1 —2y; — 2zjxp)zp + Qx%ZP} yp,
azs = [(1— 221 — 2z7yr)zp + 227yp] [(1 — 227 — 221y1)yp + 2y32p) 2P,
while J(P) is expressed by (7).
3. A GENERALIZATION OF THE GRIFFITHS’ THEOREM

Let M(X, p,v)(A + g + v = 1) be a point on the circumcurve k(O), M’ be the
diametrically opposite to M on k(O). According to (3) we have:

(9) THW + YA+ i =0

It is proved in [3] that the Simson lines sj; and sy of the points M and M’ have
a common point 7" on the Euler curve 2. The coordinates of this point are:

(1 — 2x0)(pz0 + vyo — pv)

2y020

1-2 Azg — VA

o) o = (L2200 220 )
200

I (1 —220)(Ayo + pxo — A)
220Yo

Taking into account the relationship between the coordinates of the centers O and
I, which is expressed by (2), we find the coordinates of T' by means of (10):

B pwz 23 + vwyyr — prA
2yrzr

Ir

Vwex? + Aw, 27 — VAA

11 =
( ) yr 22’].131

Awyy? + pwer? — A
T =
2xryr
where

wy =1-2x; —2yrzr, wy =1—2y; — 2zjx;, w, = 1 — 227 — 2x71Y],

A= (1 — 21[)(1 — 2y[)(1 — 22[).



433

Further, we state the task to find all points P(xp,yp,zp)(zp +yp + 2p = 1) from
the plane of AABC, whose pedal curves pass through T'. Since T is on £, (5) and
(8) imply that:

49(P)(xFyrzr + yizrer + 2jeryr) — (an12r + azeyr + aszzr) =0

Substitute (11) in the last equation and use (9). We obtain:

1
x2y222 [(Nwzz% - way%)fP + (Vwmx§ - )‘szf)yP + (/\Wyy% - ﬂsz%)ZP]
19171

(023 — visy)aop + (vona — Aoy + Oy — e =22r)
=0

It follows that the pedal curve of P passes through 7', when P is on the line

(12) X & (2 — voyyd)ap + (vwaa? — AowzByp + (wyy? — pwaa?)zp = 0

or it is on the second degree circumcurve of AABC

(13) X & (wd — vyyd)adop + (v} — AowzD)ydyp + Owyyd — pwaa?)2zp
=0

It remains to justify the line [p and the curve xp.
The diameter MO of k(O) has an equation, determined by

A pov
o Yo 2o =0
A TR

FIiGURE 1.

Substitute the coordinates of O from (2). We obtain (12). Consequently, Ip is
the diameter MO of k(O). Thus, we come to the following generalization of the
Griffiths’ theorem. See Figure 1.
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Theorem 1. If a point moves on a line through the circumcenter of ANABC with
respect to a circumcurve k(O), then the pedal curve of this point with respect to
ANABC passes through a fixed point on the Fuler circle with respect to the Fuler
curve of NABC, associated to k(O).

Note that if the point P and its conjugate @ with respect to k(O) have one and
the same pedal curve, then @ also belongs to the set of points, whose pedal curves
pass through 7. Tt is of interest to find the locus of the conjugated point ) when P
moves on the diameter M O. The two conjugated points could be replaced by each
other. For this reason we could consider the point () as moving on [p and now the
task is to find the locus of P. Further, substitute the coordinates of @ from (6) to
(12). After some manipulations we obtain equation (13). In such a way we come
to:

Theorem 2. The set of all points, whose pedal curves pass through a point T on
the Euler curve §, consists of the diameter lp of k(O) and the circumcurve xp of
AABC.

Of course, in theorem 2 each pedal curve should be counted twice - as a pedal curve
of the point P on the diameter of k(O) and as a pedal curve of the point @ , which
is conjugated to P with respect to k(O). It is interesting to discover the type of
the curve xp and to find some of its properties. For the purpose some properties
of the second degree curves in barycenric coordinates are revised.

4. ASYMPTOTIC DIRECTIONS AND CENTERS OF SECOND DEGREE CURVES IN
BARYCENTRIC COORDINATES

Take the equation of a curve in the plane of AABC"

(14) k:apz? 4 agy® + aszz? + 2102y + 2a93yz + 2az122 = 0
Putting z=1—z —y , we get:

(15) k: (a11 + aszs — 2a31)2? + (aga + azs — 2as3)y>

+2(a12 — azr — ags + asz)xy + 2(az1 — azz)r + 2(ags — asz)y + azz =0

Consider (15) as an equation in an affine coordinate system. A vector @(u,v), whose
coordinates are determined with respect to the same affine coordinate system as
the curve k' with equation

K dla? + aboy?® + 20 xy + 20,2 + 2ah5y + ahs = 0,

is asymptotic to k" if and only if a},u? + ahyv? + 2a),uv = 0. From here and from
(15) we have

(a11 + azs — 2a93)u® + (age + ass — 2a23)v* + 2(a12 — az; — ags — azz)uv =0

With respect to AABC' the vector ¢ has the following barycentric coordinates
d(u,v,w = —u —v). Substitute u? = —uv — wu and v? = —uv — vw in the last
equation to obtain:

(16) (a22 + as3 — 2(123)1)’[1) + (a33 +ai — 2a31)wu =+ ((L11 + a9 — 2@12)1“)

Thus, it is established that the vector @(u,v,w) is asymptotic to the curve k with
equation (14) if and only if the coordinates of @(u, v, w) satisfy (16).
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It is shown in [4] that the barycentric coordinates of the center of the curve k with
equation (14) are solutions of the following linear system:

(@11 — az1)z + (@12 — a23)y + (as1 — asz)z
(17) (@12 — az1)x + (a2 — ass)y + (a3 — asz)z
r+y+z=1

5. SOME PROPERTIES OF THE CURVE Y p

Applying (17) to the equation (13) of the curve xp, we obtain that the coordinates
of its center are expressed by (11). Consequently, T is the center of x p.
According to [3] the vector po(A(vyo — pzo), u(Azo — vg), v(uxo — Ayo)) is collinear
with the Simson line sp; of the point M. On the other hand, taking into account
(2), we have that the vector

B s M 22 — vioyg2), (o} — Aosz), 00wy — pd)

is collinear with the line sps. (13), (16) and the coordinates of 7 imply that p is
from the asymptotic direction of xp if and only if (9) is satisfied, i.e. M € k(O).
But sp; passes through the point T (center of xp), thus concluding that this line
is an asymptote of xp. Analogously, the Simson line sy, of M’ is an asymptote of
xp- In such a way it is established

Theorem 3. The curve xp is hyperbola with center T and with asymptotes the
Simson lines of the points M and M’'.

It is shown in [3] that only one more Simson line passes through the point 7', namely
the Simson line of the point

U'(2(xo +27) — 1,2(yo + yr) — 1,2(20 + 27) — 1)

on k(O). Substitute (2) and (11) in the coordinates of U’ and use the results for
the left hand side of (13). It follows that U’ is on xp and we have the following
Theorem 4. The hyperbola xp and the circumscribed curve k(O) have common
points A, B,C and U’.

6. CONCLUSION

Note, that together with the generalization of the Griffiths’ theorem we have deter-
mined the whole set of the points, whose pedal curves pass through a fixed point on
the Euler curve. In fact it is established that outside the diameters of k(O) there is
no new pedal curve passing through a fixed point on the Euler curve. Particularly it
follows that in case a point P moves on a diameter d of the circumcircle of AABC,
then its isogonally conjugate moves on a hyperbola xp with a center, which is the
common point of the Simson lines of the extremities of the diameter d and the Sim-
son lines are asymptotes of the hyperbola xp. Also note, that the proposed proof is
not valid for diameters of a circumscribed k(O), which have no common point with
k(O), since it has been applied essentially the existence of the point M (X, i, v) and
all the properties of the circumscribed curves that follow from here. On the other
hand, investigations in dynamic geometry (with GEOMETER’S SKATCHPAD for
example) show that the generalization is still valid. The hyperbola xp is replaced
by an ellipse or a parabola but the proof itself needs another approach.
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JUNIOR PROBLEMS

Solutions to the problems stated in this issue should arrive before June 10, 2016.

Proposals

46. Proposed by D.M. Batinetu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzdu, Ro-
mania. Solve in real numbers the equation

1 2 3 4
=222 — bz — 4.
x—1+x—2+x—3+x—4 * ot

47. Proposed by Pham—Thanh Hung, Math. Dept. “Can Tho City” Vietnam. Let
a, b, ¢ be positive real numbers. Prove that

a 2+ b 2+ c 2+10(a+bfc)(b+cfa)(c+afb)>2
b+c c+a a+b (a+b)(b+c)(c+a) -
48. Proposed by Titu Zvonaru, Comdnesti, Romania. Let P be a point on the
hypotenuse BC' of the right—angled triangle ABC. If X and Y are the intersections

of AP with the external common tangent lines to the circumcircles of the triangles
ABP and ACP, prove that XY = AP+/2 if and only if BC = AB+/2.

49. Proposed by Armend Sh. Shabani, University of Prishtina, Department of
Mathematics, Republic of Kosova. Solve the equation

3-5"T1 +11-3"71 4527 42772 = 2016.

50. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathe-
matics, Republic of Kosova. Let p be prime number such that p = 7( mod 8).
We define A = {1,2,..., ”2;1} and f(k) = ‘p V%FJ - 2’“_1‘ for all k € A and

p%l is prime number, where |z | is greatest integer not greater than x. Prove that

F(A) = A.

Solutions

41. Proposed by D.M. Batinetu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzau, Ro-
mania. Let a,b,c be positive real numbers. Show that a + b + ¢ + 3vabc >

2(Vab + Vbe + vac).
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Solution by Titu Zvonaru, Comanesti, Romania.
The Schur inequality is
zz—y)lr—2)+yly—2)(y—2)+z2(z-2)(z—y) =0
(1) = 3+ 2 + 23 4+ 3zyz > 2Py + xy® + P +y2? + 2’z 4 12
Applying the AM - GM inequality we obtain
(2) 22y + xy?® > 2@,y22+y22 > 2W,x22+x22 > 2V1323
By (1) and (2) yields
23+ % 4 2% + 3ayz > 20233 4 24323 + 2V a3 28,
Taking = = ¥/a,y = Vb, z = {/c, it results that
a+ b+ ¢+ 3Vabe > 2(Vab + Vbe + ac).

The equality holds if and only if a = b = c.

Also solved by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain;Michel Bataille, Rouen, France; Nicusor Zlota, Traian Vuia Tech-
nical College, Focsani, Romania; Prishtina Math Gymnasium Problem
Solving Group, Republic of Kosova and the proposers.

42. Proposed by Francisco Javier Garcia Capitan, I.E.S. Alvarez Cubero de Priego
de Cdrdoba, Spain . Let ABC be a triangle and P a point inside the internal part of
ABC. Let XY Z be the cevian triangle of P. Find points U, V, W, on the lines Y Z,
ZX, XY such that the lines UV, VW, WU pass respectively through the points
A B, C.

Solution by Michel Bataille, Rouen, France.

We will say that a point U of the line Y Z is good if the lines AU and CU intersect
ZX and XY respectively at V and W such that B, V, W are collinear. The problem
boils down to determining the good points of YZ. We show that there are two
good points Uy, Us. In part 1, we calculate the barycentric coordinates of U; and
U, relatively to ABC and in part 2, we show how to construct the points Uy, Us.
Part 1. Let P = (o : B : v) where a,8,7 > 0 and a + 8+ v = 1. Then,
X=0:8:7),Y=(a:0:7v),Z = (a::0), hence the equations of Y Z, ZX, XY
respectively are
OByvr —yay —afBz=0, —fyx+~yay—afz=0, Lyx+yay— afz=0.
Let £ : my + nz = 0 be an arbitrary line through A, intersecting ZY at U and
ZX at V. We readily obtain U = (a(mf8 — nvy) : —nfy : mpBy) and V = (a(mp +
ny) : nBy 1 —mpBy). Then, BV : mpByx + a(mfB + ny)z = 0 intersects XY at
W = (—a(mB + ny) : 2mB% + nBy : mBy). Expressing that U is good if and only
if C,U, W are collinear, we obtain the condition
a(mB—ny) —a(mB+ny) 0

—nfBy 2mB3% +npy 0| =0.

mp3y mfy 1
This condition easily rewrites as m? 32 —mnBy—n?y? = 0, that is, (mB—7rnvy)(mB+
(1/7)ny) = 0 where 7 = % Thus, there are two good points Uy, Uz obtained as
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the points of intersection with Y Z of the lines 7yy+ 82z = 0 and (—1/7)yy+ 8z = 0.
A simple calculation gives

Uy = (a: =1 972, Uy = (at?: Br 1 7).

Part 2. Let I14 be the perspectivity with centre A from line Y Z to line ZX, Ilg
the perspectivity with centre B from line ZX to line XY and Ils the perspectivity
with centre C from line XY to line YZ. Clearly, a point U of Y Z is good if and
only if Il o IIp o II4(U) = U, that is, if and only if U is a double point of the
projectivity p = Il o IIp o 114 from the line Y Z to itself. Steiner’s construction
of the double points of such a projectivity is classical [see for example H. Dorrie,
100 Great Problems of Elementary Mathematics, Dover, 1965, p. 255-257]. On the
figure, we have first constructed Z’ = p(Z),Y’ = p(Y) and M’ = p(M) where M
is the point of intersection of AP and Y Z.

Also solved by the proposer.

43. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. In a multiple—choice—test you are asked to answer four questions.
Question i € {1,2,3,4} has i + 1 possible answers and each question has only one
correct answer. Answering randomly, what is the probability of giving at least two
correct answers?

Solution by the Prishtina Math Gymnasium Problem Solving Group,
Republic of Kosova.

The solver submitted two correct solutions. We present one of them slightly modi-
fied by the editor. Let P(0) and P(1) be respectively the probability that one gives
no correct answer and just one correct answer. The result is clearly 1— P(0) — P(1).
Letting Py (0) and Py (1) respectively the probability that the answer of the k-th
question be uncorrect or correct, clearly we have:

P(0) = P1(0) - P2(0) - P5(0) - P4(0) =
P(1) = Pi(1) - P2(0) - P3(0) - P4(0) + P1(0) - Po(1) - P3(0) - P4(0) + P1(0) - P(0) -

v
,@

—~
a——

P3(1) - Py(0) + P1(0) - P»(0) - P5(0 )
1234, 1134, 1214, 1231 35
_2345234523452345_12
Finally,
23
1-P0O)—P(1) = —.
)~ P(1) = o

Also solved by the proposer.

44. Proposed by Proposed by Armend Sh. Shabani, University of Prishtina, Depart-
ment of Mathematics, Republic of Kosova. Let m be an odd integer greater than
3. If 22" + 1 is prime, he can not be expressed as a difference of m-th powers of
two positive integers.

Solution by the the Prishtina Math Gymnasium Problem Solving Group,
Republic of Kosova.
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We assume the contrary 22" +1 = 2™ —y™ 2,y € N.
Then we obtain

2 fl=(z—y) @™ +...ym ).
Therefore it should be x — y = 1. Then,
m—1
2

It means that m divides 22" which is contradiction according to unique factorization
theorem.

22 f1=(y+ )" —y" =my™ + YT ) L

Also solved by the proposer.

45. Proposed by Marcel Chirita, Bucharest, Romania. Solve in real numbers the
following system:

920 -1 4 ov* =2 — 19
320° =1 4 3v°-2 — 36,

Solution by Michel Bataille, Rouen, France.
We show that the solutions for the pairs (z,y) are

(f3:5): (1399 (f3:-9): (-1/3.-8). (V2.2 (-v2.2). (2~ (v -2).

As it is readily checked, it suffices to show that (2,3) and (3,2) are the solutions
for (z,y) of the system
20 +2Y = 12
{ 3543 = 36
The pairs (2,3) and (3,2) are obvious solutions for (z,y). We show that there are
no other solutions.
Let (z,y) be an arbitrary solution. Setting X =2, Y = e¥~2, we have

Xln(2) + Yln(2) =3, Xln(3) + Yln(3) =4,
hence X € (0,3Y/1(?) (since X"(? < 3) and f(X) = 0 where f(u) = u™®) +
(83— um@)E 4
A short calculation gives the derivative of f on (0, 3%/ ™(2).

In(3)—1n(2)

f/(u) = (1n(3))u1n(3)—1 [1 _ (e(uln(Q))) n(2)

where 6(t) = 3L,

On (0, 00), the function 6 is strictly decreasing with (%) = 1. Thus,

3 1/1n(2)

fl(u) >0e=0u™?P)<le=u>a= (2>

and so f is strictly decreasing on (0, ] and strictly increasing on [, 31/1"(2)). Tt
is readily checked that 1 € (0,a), e € (o, 3/™®2) and f(1) = 0 = f(e). Therefore
f(u) # 0if u # 1,e. It follows that we must have X = 1 or X = e. Since
X =1 implies Y = 2/ = ¢ and z = 2,y = 3 while X = e implies Y = 1 and
x = 3,y = 2, the proof is complete.
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Also solved by Neculai Stanciu, ” George Emil Palade” General School,
Buzau, Romania; Angel Plaza, Universidad de Las Palmas de Gran Ca-
naria, Spain and the proposer.
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