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assisting their students in submitting solutions. Student solutions should include
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Solutions to the problems stated in this issue should arrive before
June 10, 2016

Problems
124. Proposed by Cornel Ioan Vălean, Timiş, Rumania. Find an expression En(x)
whose terms are linearly independent with the other terms in the integrand such
that ∣∣∣∣∫ 1

0

( α1

log(x)
+

α2

log2(x)
+ · · ·+ αn

logn(x)
+ En(x)

)
dx

∣∣∣∣ <∞
where αi 6= 0, αi ∈ R.
Then, for a specific En(x) family that fulfills the requirements above, calculate∫ 1

0

( α1

log(x)
+

α2

log2(x)
+ · · ·+ αn

logn(x)
+ En(x)

)
dx

in closed form.

125. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. Let
x, y and z be the sides of a triangle and r, R and s be the inradius, circumradius
and the semiperimeter of the triangle respectively. Prove that

1
(x+ y)2

+
1

(x+ z)2
+

1
(y + z)2

≤ r4 + 8r3R+ 124r2R2 + 2r2s2 − 8rRs2 + s4

128r2R2s2
.
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126. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n− 2 ≥ m ≥ 1 be integers. Calculate∫ ∞

0

xm−1 + xm−2 + · · ·+ x+ 1
xn−1 + xn−2 + · · ·+ x+ 1

dx.

127. Proposed by Serafeim Tsipelis, Ioannina, Greece and Anastasios Kotronis,
Athens, Greece (Jointly). Evaluate

∑+∞
k=1

ζ(2k+1)
(k+1)(2k+1) , where ζ is the Riemann’s

zeta function.

128. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzǎu, Romania.
Let {an}n≥1, {bn}n≥1 be real sequences with an 6= an+1 and bn 6= bn+1 such that:
limn→∞ an = a, limn→∞ bn = b,limn→∞ n(an+1 − an) = c and limn→∞ n(bn+1 − bn) =
d, where a, b, c, d ∈ R. Let f, g : R→ R be differentiable functions with continuous
derivatives R . Calculate limn→∞ n(f(an+1)f(bn+1)− f(an)f(bn)).

129. Proposed by Florin Stanescu, Serban Cioculescu school, city Gaesti, jud.
Dambovita, Romania. Let f : [−1, 1] → R, a function a twice differentiable, the
following properties:
a) f(−1) = f(1) = 0.
b) f

′′
it is integrable and positive on [−1, 1].

Prove that:

1
6

(∫ 1

−1

(f
′′
(x))2dx

)
≥ max{(f(x))2;x ∈ [−1, 1]}.

130. Proposed by Mohammed Aassila, Strasbourg, France. Among the first 2016
positive integers (from 1 to 2016) we underline those which may be represented as
the sum of 5 nonnegative integer powers of 2. Is the set of underlined numbers
larger than that of the nonunderlined ones ?
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

117. Proposed by Cornel Ioan Vălean, Timiş, Romania. Calculate.∫ π/2

0

(Chi(cot2 x) + Shi(cot2 x)) csc2 x e− csc2 x dx.

where Shi(x) =
∫ x

0
sinh(t)

t dt and Chi(x) = γ + log x+
∫ x

0
cosh(t)−t

t dt.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The answer is 0.
First note that Chi(z)+Shi(z) = Ei(z) the “exponential integral” so that, with the
change of variables t = cotx, the desired integral is

I =
1
e

∫ π/2

0

Ei(cot2 x) csc2 x e− cot2 x dx =
1
e

∫ ∞
0

Ei(t2) e−t2 dt (1)

Recall that Ei is defined for real non-zero values of x by

Ei(x) = −P V
∫ +∞

−x

e−u

u
du

that is the Cauchy principal value of the integral. So, for x > 0 we have

Ei(x) = − lim
ε→0+

(∫ −ε

−x

e−u

u
du+

∫ +∞

ε

e−u

u
du

)
= lim

ε→0+

(∫ −ε

−x

−e−u

u
du−

∫ x

ε

e−u

u
du

)
−
∫ +∞

x

e−u

u
du

= lim
ε→0+

∫ x

ε

2 sinhu
u

du−
∫ +∞

x

e−u

u
du

=
∫ x

0

2 sinhu
u

du−
∫ +∞

x

e−u

u
du

=
∫ 1

0

2 sinh(xt)
t

dt−
∫ +∞

1

e−xt

t
dt

We conclude that for x > 0 we have

e−x2
Ei(x2) =

∫ 1

0

e−x2(1−t) − e−x2(1+t)

t
dt−

∫ +∞

1

e−x2(1+t)

t
dt
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Now, using the positivity of the integrands, and Tonelli’s theorem we see that∫ ∞
0

Ei(x2)e−x2
dx =

∫ 1

0

(∫ ∞
0

(e−x2(1−t) − e−x2(1+t))dx
)
dt

t

−
∫ ∞

1

(∫ ∞
0

e−x2(1+t)dx

)
dt

t

= J ·
(∫ 1

0

(
1

t
√

1− t
− 1
t
√

1 + t

)
dt−

∫ ∞
1

dt

t
√

1 + t

)
where J =

∫∞
0
e−u2

du. So,∫ ∞
0

Ei(x2)e−x2
dx = J · lim

ε→0+
K(ε) (2)

where K(ε) is defined, for 0 < ε < 1, by

K(ε) =
∫ 1

ε

dt

t
√

1− t
−
∫ ∞

ε

dt

t
√

1 + t

The change of variables t =
s

1 + s
in the first integral shows that

K(ε) =
∫ ∞

ε/(1−ε)

ds

s
√

1 + s
−
∫ ∞

ε

dt

t
√

1 + t

= −
∫ ε/(1−ε)

ε

dt

t
√

1 + t
=
∫ ε/(1−ε)

ε

(
1− 1√

1 + t

)
dt

t
+ log(1− ε)

=
∫ ε/(1−ε)

ε

dt√
1 + t(

√
1 + t+ 1)

+ log(1− ε).

Therefore, limε→0+ K(ε) = 0, and from (2) and (1) the announced conclusion fol-
lows.

Solution 2 by Moti Levy, Rehovot, Israel.

By change of variable, y = cot2 x,

∫ π
2

0

(
Chi

(
cot2 x

)
+ Shi

(
cot2 x

))
csc2 xe− csc2 xdx

=
1
2e

∫ ∞
0

y−
1
2 (Chi (y) + Shi (y)) e−ydy.

From the definitions of the Chi and Shi functions, for positive real x,

Chi (x) + Shi (x) = γ + lnx+
∫ x

0

cosh t− 1
t

dt+
∫ x

0

sinh t
t

dt

= γ + lnx+
∫ x

0

et − 1
t

dt = γ + lnx+
∞∑

k=1

xk

kk!
:= Ei (x) .

∫ π

0

(
Chi

(
cot2 x

)
+ Shi

(
cot2 x

))
csc2 xe− csc2 xdx =

1
2e

∫ ∞
0

x−
1
2 Ei(x)e−xdx
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For −1 < p < 0, and using the fact
∫∞
0
xp (lnx) e−xdx = Γ (p+ 1)ψ (p+ 1) ,∫ ∞

0

xp Ei(x)e−xdx =
∫ ∞

0

xp

(
γ + lnx+

∞∑
k=1

xk

kk!

)
e−xdx

= γ

∫ ∞
0

xpe−xdx+
∫ ∞

0

xp (lnx) e−xdx+
∞∑

k=1

∫ ∞
0

xk+p

kk!
e−xdx

= γΓ (p+ 1) + Γ (p+ 1)ψ (p+ 1) +
∞∑

k=1

Γ (k + p+ 1)
kk!

.

To evaluate
∑∞

k=1
Γ(k+p+1)

kk! , we define the generating function

f (x) :=
∞∑

k=1

Γ (k + p+ 1)
kk!

xk.

Clearly f (1) =
∑∞

k=1
Γ(k+p+1)

kk! .

f (x) := Γ (p+ 1)
∞∑

k=1

Γ (k + p+ 1)
Γ (k + 1)Γ (p+ 1)

xk

k
= Γ (p+ 1)

∞∑
k=1

(
k + p

k

)
xk

k

f
′
(x) = Γ (p+ 1)

∞∑
k=1

(
k + p

k

)
xk−1 = Γ (p+ 1)

(
1

x (1− x)1+p −
1
x

)

f (x) = Γ (p+ 1)
∫ x

0

(
1

t (1− t)1+p −
1
t

)
dt

f (1) = Γ (p+ 1)
∫ 1

0

(
1

t (1− t)1+p −
1
t

)
dt = −Γ (p+ 1) (ψ (−p) + γ)

∫ ∞
0

xp Ei(x)e−xdx =
∫ ∞

0

xp

(
γ + lnx+

∞∑
k=1

xk

kk!

)
e−xdx

= γ

∫ ∞
0

xpe−xdx+
∫ ∞

0

xp (lnx) e−xdx+
∞∑

k=1

∫ ∞
0

xk+p

kk!
e−xdx

= γΓ (p+ 1) + Γ (p+ 1)ψ (p+ 1)− Γ (p+ 1) (ψ (−p) + γ)

= Γ (p+ 1) (ψ (p+ 1)− ψ (−p)) = −Γ (p+ 1)π cot (πp) .

For p = − 1
2 ,
∫∞
0
xp Ei(x)e−xdx = −Γ

(
1
2

)
π cot

(
π
2

)
= 0.

We conclude that∫ π
2

0

(
Chi

(
cot2 x

)
+ Shi

(
cot2 x

))
csc2 xe− csc2 xdx = 0.

Also solved by Albert Stadler, Switzerland and the proposer.

118. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
Compute the following sum

∞∑
m=1

∞∑
n=1

(−1)m+nm log(m+ n)
(m+ n)3

.
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Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is

− log2(2)
4

+ γ
log(2)

2
− π2

24
(γ + log(4π)− 12 logA)

where γ is the Euler-Mascheroni constant, and A is the Glaisher-Kinkelin constant.

Let Km be defined, for m ≥ 1, by

Km =
∞∑

n=1

(−1)m+n log(m+ n)
(m+ n)3

=
∞∑

n=m+1

(−1)n log(n)
n3

The series defining Km is absolutely convergent, and since x 7→ log x
x3

is decreasing

on [2,+∞) we conclude that

0 < (−1)m+1Km <
log(m+ 1)
(m+ 1)3

(1)

Thus the series
∑∞

m=1mKm is convergent and we are interested in computing the
sum S =

∑∞
m=1mKm.

Now, let Sq =
∑q

m=1mKm, we have

Sq =
q∑

m=1

(
m(m+ 1)

2
− m(m− 1)

2

)
Km

=
q+1∑
m=2

m(m− 1)
2

Km−1 −
q∑

m=1

m(m− 1)
2

Km

=
q(q + 1)

2
Kq +

q∑
m=2

m(m− 1)
2

(Km−1 −Km)

=
q(q + 1)

2
Kq +

q∑
m=2

m(m− 1)
2

(−1)m log(m)
m3

=
q(q + 1)

2
Kq +

1
2

q∑
m=2

(−1)m(m− 1) log(m)
m2

.

So, using (1) and letting q tend to +∞ we see that

S =
∞∑

m=2

(−1)m(m− 1) log(m)
2m2

=
1
2

∞∑
m=2

(−1)m log(m)
m︸ ︷︷ ︸

V

−1
2

∞∑
m=2

(−1)m log(m)
m2︸ ︷︷ ︸

U

(2)
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Now, for U we have

U =
∞∑

m=2

(1 + (−1)m) log(m)
m2

−
∞∑

m=2

log(m)
m2

=
∞∑

m=1

2 log(2m)
4m2

−
∞∑

m=2

log(m)
m2

=
log 2

2
ζ(2) +

1
2
ζ ′(2) =

π2 log 2
12

+ ζ ′(2)

But ζ ′(2) can be calculated in terms of the other known constants by the formula

ζ ′(2) =
π2

6
(γ + log(2π)− 12 logA).

Thus

U =
π2

12
(γ + log(4π)− 12 logA) (3)

Let us come to V , let

gn =
log(n)
n
− log2(n)− log2(n− 1)

2
and define

Gm =
m∑

n=2

gn =
m∑

n=2

log(n)
n
− 1

2
log2m

Clearly

gn =
1
2

log2

(
1− 1

n

)
+
(

1
n

+ log
(

1− 1
n

))
log(n) = O

(
log(n)
n2

)
Thus, the series

∑
gn is convergent. It follows that there is a constant ` such that

n∑
k=2

log(k)
k

=
log2(n)

2
+ `+ o(1) (4)

Now, using (4), for m > 1 we have
2m∑
n=2

(−1)n log(n)
n

=
2m∑
n=2

(1 + (−1)n) log(n)
n

−
2m∑
n=2

log(n)
n

=
m∑

n=1

log(2n)
n

−
2m∑
n=2

log(n)
n

= log(2)
m∑

n=1

1
n

+
log2(m)

2
− log2(2m)

2
+ o(1)

= − log2(2)
2

+ log(2)

(
m∑

n=1

1
n
− log(m)

)
+ o(1)

Taking the limit as m tend to +∞ we get

V = − log2(2)
2

+ γ log(2) (5)
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Replacing (3) and (5) in (2) we get

S = − log2(2)
4

+ γ
log(2)

2
− π2

24
(γ + log(4π)− 12 logA) ≈ 0.0292762

which is the announced result.

Solution 2 by Moti Levy, Rehovot, Israel.

By D. Borwein trick:

∞∑
m=1

∞∑
n=1

(−1)m+n m ln (m+ n)
(m+ n)3

=
1
2

( ∞∑
m=1

∞∑
n=1

(−1)m+n m ln (m+ n)
(m+ n)3

+
∞∑

m=1

∞∑
n=1

(−1)m+n n ln (m+ n)
(m+ n)3

)

=
1
2

∞∑
m=1

∞∑
n=1

(−1)m+n ln (m+ n)
(m+ n)2

=
1
2

∞∑
m=1

∞∑
k=m+1

(−1)k ln k
k2

=
1
2

∞∑
k=2

k−1∑
m=1

(−1)k ln k
k2

=
1
2

∞∑
k=2

(−1)k (k − 1) ln k
k2

=
1
2

∞∑
k=1

(−1)k ln k
k
− 1

2

∞∑
k=1

(−1)k ln k
k2

.

Well known facts from analytic number theory are:
1) The Dirichlet eta function is defined as follows,

η (s) =
∞∑

k=1

(−1)k−1

ks
, Re (s) > 0.

2) The derivative of Dirichlet Eta function is

η
′
(s) =

{ ∑∞
k=1 (−1)k ln k

ks = 21−s ln 2 · ζ (s) +
(
1− 21−s

)
ζ
′
(s) , s 6= 1∑∞

k=1 (−1)k ln k
k = γ ln 2− 1

2 ln2 2, s = 1.

∞∑
m=1

∞∑
n=1

(−1)m+n m ln (m+ n)
(m+ n)3

=
1
2

(
η
′
(1)− η

′
(2)
)

=
1
2

(
γ − π2

12

)
ln 2− 1

4
ln2 2− 1

4
ζ
′
(2) ∼= 0.0292762.

Solution 3 by Ramya Dutta, Chennai Mathematical Institute (student),
India.

Making the change in variable in the sum, m+ n = k:
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∞∑
m,n=1

(−1)m+nm log(m+ n)
(m+ n)3

=
∞∑

k=2

(−1)k log k
k3

(
k−1∑
m=1

m

)

=
1
2

∞∑
k=2

(−1)k log k
k3

(k2 − k)

=
1
2

∞∑
k=1

(−1)k log k
k
− 1

2

∞∑
k=1

(−1)k log k
k2

For Re(s) > 1, we have η(s) =
∞∑

k=1

(−1)k−1

ks
=
(

1− 1
2s−1

)
ζ(s)

Differentiating both sides with respect to s leads to:

∞∑
k=1

(−1)k−1 log k
ks

= −
(

1− 1
2s−1

)
ζ ′(s)− log 2

2s−1
ζ(s)

Thus,
∞∑

k=1

(−1)k log k
k2

=
1
2
ζ ′(2) +

log 2
2

ζ(2)

On the other hand,
2n∑

k=1

(−1)k log k
k

=
n∑

k=1

log(2k)
2k

−
n∑

k=1

log(2k − 1)
2k − 1

= Hn log 2 +
n∑

k=1

log k
k
−

2n∑
k=1

log k
k

For Euler-Maclaurin’s formula we have,

Hn = log n+ γ +
1
2n

+O
(

1
n2

)
and,

n∑
k=1

log k
k

=
1
2

log2 n+ C +O
(

log n
n

)
where, C is some constant term.
Thus,

2n∑
k=1

(−1)k log k
k

= log 2 log n+ γ log 2 +
1
2

log2 n− 1
2

log2(2n) +O
(

log n
n

)
= γ log 2− 1

2
log2 2 +O

(
log n
n

)
Combining the results we have:

∞∑
m,n=1

(−1)m+nm log(m+ n)
(m+ n)3

=
γ log 2

2
− log2 2

4
− 1

4
ζ ′(2)− ζ(2) log 2

4
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Also solved by Albert Stadler, Switzerland; Haroun Meghaichi (student),
Algeria; Anastasios Kotronis, Athens, Greece (Jointly) and the proposer.

119. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n > 1 be an integer. Calculate∫ ∞

0

lnn

∣∣∣∣1− x1 + x

∣∣∣∣ dx.
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is 4(−1)n(n!)(1− 2−n)ζ(n) where ζ is the Riemann zeta function.
Let the considered integral be denoted by In. Clearly we have

In =
∫ 1

0

lnn

(
1− x
1 + x

)
dx+

∫ ∞
1

lnn

(
x− 1
x+ 1

)
dx︸ ︷︷ ︸

x←1/x

=
∫ 1

0

lnn

(
1− x
1 + x

)
dx+

∫ 1

0

1
x2

lnn

(
1− x
1 + x

)
dx

=
∫ 1

0

(
1 +

1
x2

)
lnn

(
1− x
1 + x

)
dx, x← et − 1

et + 1

=
∫ ∞

0

(
1 +

(et + 1)2

(et − 1)2

)
(−t)n 2et

(et + 1)2
dt

= 2(−1)n

∫ ∞
0

(
1

(1 + e−t)
+

1
(1− e−t)

)
e−ttndt

But, since
∑∞

m=1mx
m−1 = 1

(1−x)2 for |x| < 1, we conclude that

1
(1 + e−t)2

+
1

(1− e−t)2
= 2

∞∑
m=0

(2m+ 1)e−2mt, t > 0,

Thus

In = 4(−1)n

∫ ∞
0

( ∞∑
m=0

(2m+ 1)e−(2m+1)ttn

)
dt

Since the summands are positive functions we can interchange the signs of sum and
integral, so

In = 4(−1)n
∞∑

m=0

1
(2m+ 1)n

∫ ∞
0

e−uundu

= 4(−1)n(n!)
∞∑

m=0

1
(2m+ 1)n

= 4(−1)n(n!)

( ∞∑
m=1

1
mn
−
∞∑

m=1

1
(2m)n

)
= 4(−1)n(n!)(1− 2−n)ζ(n)

Which is the desired conclusion.

Solution 2 by Michel Bataille, Rouen, France.
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Let I denote the integral. We show that I = 4(−1)n(1− 2−n)n!ζ(n) where ζ is the

Riemann function defined by ζ(s) =
∞∑

k=1

1
ks (s > 1).

First, I = I1 + I2 with

I1 =
∫ 1

0

(
ln
(

1− x
1 + x

))n

dx and I2 =
∫ ∞

1

(
ln
(
x− 1
x+ 1

))n

dx.

The substitutions x = 1−y
1+y in I1 and x = 1+y

1−y in I2 give

I1 = 2
∫ 1

0

(ln y)n

(1 + y)2
dy and I2 = 2

∫ 1

0

(ln y)n

(1− y)2
dy

so that

I = 4
∫ 1

0

(ln y)n · 1 + y2

(1− y2)2
dy = 4(K − J)

where

K =
∫ 1

0

(ln y)n

(1− y)2
dy and J =

∫ 1

0

(ln y)n · 2y
(1− y2)2

dy.

Since the substitution y =
√
u in J yields J = 2−nK, we obtain I = 4(1− 2−n)K.

Note that 1
(1−y)2 =

∞∑
k=0

(k + 1)yk for y ∈ [0, 1), hence

K =
∫ 1

0

( ∞∑
k=0

(k + 1)yk(ln y)n

)
dy (1).

Now, we shall use the following result (see a quick proof at the end): if m, k are
integers such that k ≥ 0 and m ≥ 1, then∫ 1

0

xk(lnx)m dx =
(−1)mm!

(k + 1)m+1
(2).

Since
∞∑

k=0

∫ 1

0

|(k+1)yk(ln y)n| dy = (−1)n
∞∑

k=0

(k+1)
∫ 1

0

yk(ln y)n dy = n!
∞∑

k=0

1
(k + 1)n

<∞

we may interchange
∑

and
∫

in (1) and obtain

K =
∞∑

k=0

∫ 1

0

(k+1)yk(ln y)n dy =
∞∑

k=0

(k+1)
(−1)nn!

(k + 1)n+1
= (−1)nn!

∞∑
k=0

1
(k + 1)n

= (−1)nn!ζ(n).

and the claimed result follows.

Proof of (2). Fix k and let Um =
∫ 1

0
xk(lnx)m dx. The proof is by induction on m.

First, integrating by parts,

U1 =
∫ 1

0

xk lnx dx =
[
xk+1

k + 1
(lnx)

]1
0

− 1
k + 1

∫ 1

0

xk dt =
−1

(k + 1)2

so that (2) holds when m = 1.
As for the induction step, we integrate Um (where m > 1) by parts again:

Um =
[
xk+1

k + 1
(lnx)m

]1
0

− m

k + 1

∫ 1

0

xk(lnx)m−1 dx = − m

k + 1
Um−1
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and so (2) holds if Um−1 = (−1)m−1(m−1)!
(k+1)m .

Solution 3 by Moti Levy, Rehovot, Israel.

Let In :=
∫∞
0

lnn
∣∣∣ 1−x
1+x

∣∣∣ dx.
We get rid of the absolute value by splitting the integration range,

In =
∫ 1

0

lnn

(
1− x
1 + x

)
dx+

∫ ∞
1

lnn

(
x− 1
x+ 1

)
dx.

By substitution of x = 1
y in the second integral,

In =
∫ 1

0

lnn

(
1− x
1 + x

)
dx+

∫ 1

0

1
x2

lnn

(
1− x
1 + x

)
dx

By the following substitution,

u = − ln
1− x
1 + x

; x = −e
−u − 1
e−u + 1

, dx = 2
e−u

(e−u + 1)2
du

In = 2
∫ ∞

0

un e−u

(1 + e−u)2
du+ 2

∫ ∞
0

un e−u

(1− e−u)2
du

= 2 (−1)n
∫ ∞

0

un eu

(eu + 1)2
du+ 2 (−1)n

∫ ∞
0

un eu

(eu − 1)2
du

After integration by parts

In = 2 (−1)n
n

∫ ∞
0

un−1 1
eu + 1

du+ 2 (−1)n
n

∫ ∞
0

un−1 1
eu − 1

du

= 4 (−1)n
n

∫ ∞
0

un−1 eu

e2u − 1
du.

Now,
eu

e2u − 1
=

1
eu − 1

− 1
e2u − 1

.

Hence,

In = 4 (−1)n
n

(∫ ∞
0

un−1 1
eu − 1

du−
∫ ∞

0

un−1 1
e2u − 1

du

)
= 4 (−1)n

n

(∫ ∞
0

un−1 1
eu − 1

du− 1
2n

∫ ∞
0

vn−1 1
ev − 1

dv

)
= 4 (−1)n

n

(
1− 1

2n

)∫ ∞
0

un−1 1
eu − 1

du.

An integral representation of the Zeta function is

Γ (s) ζ (s) =
∫ ∞

0

vs−1 1
ev − 1

dv, Re (s) > 1.

We conclude that∫ ∞
0

lnn

∣∣∣∣1− x1 + x

∣∣∣∣ dx = (−1)n 4
(

1− 1
2n

)
n!ζ (n) .

Also solved by Ramya Dutta, Chennai Mathematical Institute (stu-
dent)India; Albert Stadler, Switzerland and the proposer.
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120. Proposed by Anastasios Kotronis, Athens, Greece and Haroun Meghaichi
(student), Algiers, Algeria, (Jointly.) (Corrected.) Let I(A) =

∫ A

1
A1/x dx. For

n a non-negative integer compute the following limit, if it exists

lim
A→+∞

lnnA

A

(
I(A)−

n−1∑
k=0

k!
A

lnk A

)
,

where the sum over an empty set of indices is interpreted as zero.

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

Let F (t) be defined by F (t) =
et∫
1

et/xdx so that I(A) = F (lnA). A simple manipu-

lation shows that

F (t) = t

∫ t

te−t

eu

u2
du = t

[
−e

u

u

]t

te−t

+ t

∫ t

te−t

eu

u
du

= (ete−t

− 1)et + t(G(t)−G(te−t)) (1)

Where G(v) =
∫ v

1
eu

u du. Since lim
t→∞

te−t = 0 we are interested in the asymptotic
expansion of G in the neighborhoods of 0 and +∞.
Now, for small values of v > 0 we have

G(v) = ln v +
∫ v

1

eu − 1
u

du = ln v +
∫ 1

0

eu − 1
u

du−
∫ v

0

eu − 1
u

du

= ln v + `−
∞∑

n=1

vn

n · (n!)
, with ` =

1∫
0

eu−1
u du.

Thus, for t > 0 we have

tG(te−t) = −t2 + t log t+ `t−
∞∑

n=1

tn+1e−nt

n · (n!)
(2)

Also, since (
n∑

k=0

k!
uk+1

eu

)′
=
eu

u
− (n+ 1)!

un+2
eu

we see that for t > 0 we have

G(t) =
n∑

k=0

k!
tk+1

et − e
n∑

k=0

k! +
∫ t

1

(n+ 1)!
un+2

eudu (3)

But, if t > s ≥ 1 we have∫ t

1

eu

um
du =

∫ s

1

eu

um
du+

∫ t

s

eu

um
du

≤
∫ s

1

eudu+
[
eu

um

]t

s

+
∫ t

s

meu

um+1
du

≤ es + et

∫ t

s

m

um+1
du ≤ es +

et

sm
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So, choosing s = t/2, we see that, in the neighborhood +∞ and for every positive
integer m we have ∫ t

1

eu

um
du = O

(
et

tm

)
So, from (3) we obtain the following asymptotic expansion of G the neighborhood
+∞

∀n ≥ 0, G(t) =
n∑

k=0

k!
tk+1

et +O
(

et

tn+2

)
(4)

Clearly, for large t, we have (ete−t − 1)et) = O(t), and tG(te−t) = O(t2) (according
to (2)), but in the neighborhood +∞, tk = o

(
et

tm

)
for any m. So from the above

we conclude that for large t, and any n ≥ 0 we have

F (t) =
n∑

k=0

k!
tk
et +O

(
et

tn+1

)
.

Or, in terms of I we have, for every non-negative integer n and large A,

I(A) =
n∑

k=0

k!A
lnk A

+O
(

A

lnn+1A

)
.

This proves that

∀n ≥ 0, lim
A→∞

lnnA

A

(
I(A)−

n−1∑
k=0

k!A
lnk A

)
= n!

which is the desired conclusion.

Also solved by Albert Stadler Switzerland; Moti Levy, Rehovot, Israel;
Ramya Dutta, Chennai Mathematical Institute (student), India and the
proposers.

121. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzǎu,
Romania. Le m > 0, Lk be k-th Lucas number and Γ : (0,∞) → (0,∞) be the
Gamma function. Calculate

lim
n→∞

∫ n+1
√

(n+1)!

n
√

n!

Γ
(x
n

n
√
Lm

n

)
dx.

Solution 1 by Haroun Meghaichi (student), Algeria.

The answer is 1
eΓ
(

ϕm

e

)
, where ϕ is the golden ratio. we’ll use the following lemma:

Let f : [a, b] → R continuous, and (xn)n, (yn)n two convergent sequences of [a, b]
that have the same limit α, then∫ yn

xn

f(t) dt = f(α)(yn − xn) + o(yn − xn).
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Proof. Let ε > 0, then ∃δ > 0, such that |f(t) − f(α)| < ε, whenever |x − α| < δ.
since xn, yn → α, then there is n0 ∈ N such that xn, yn ∈]α − δ, α + δ, [ wherever
n > n0. Therefore∣∣∣∣∫ yn

xn

f(t) dt− f(α)(yn − xn)
∣∣∣∣ ≤ ∫ yn

xn

|f(t)− f(α)| dt ≤ ε|yn − xn|.

�

Note that the given integral equals

In =
n

n
√
Lm

n

n+1√(n+1)!
n

n
√

Lm
n∫

n√
n!

n
n
√

Lm
n

Γ(t) dt,

this comes directly from the sub t = x
n

n
√
Lm

n , let xn, yn be the lower, upper bound
of the last integral respectively, then xn, yn → ϕme−1, since

n
√
Lm

n =
(
ϕn + (−ϕ)−n

)m/n = ϕm
(
1 + (−ϕ)−2n

)m/n
= ϕm +O(ϕ−2n).

and
n√

n!
n! → e−1, and thus

n+1
√

(n+ 1)!
n

=
n+ 1
n

n+1
√

(n+ 1)!
n+ 1

n→∞−→ e−1.

now, note that by Stolz theorem
n

n
√
Lm

n

(yn − xn) =
(

n+1
√

(n+ 1)!− n
√
n!
)

n→∞−→ e−1.

By the lemma we get

In =
n

n
√
Lm

n

(
Γ
(
ϕm

e

)
(yn − xn) + o(yn − xn)

)
=

1
e
Γ
(
ϕm

e

)
+ o(1).

which proves that the limit equals 1
eΓ
(

ϕm

e

)
.

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

Let I(n) be defined by

I(n) =
∫ n+1

√
(n+1)!

n
√

n!

Γ
(x
n

n
√
Lm

n

)
dx

A simple change of variables shows that

I(n) = an

∫ cn

bn

Γ(x) dx = an(F (cn)− F (bn))

with

an =
n

n
√
Lm

n

, bn =
n
√
n!
n

n
√
Lm

n , cn =
n+1
√

(n+ 1)!
n

n
√
Lm

n , F (t) =
∫ t

1

Γ(x) dx
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Using Stirling asymptotic expansion we have
n
√
n!
n

=
1
e

+
lnn
2en

+
log(2π)

2en
+O

(
ln2 n

n2

)
(1)

n+1
√

(n+ 1)!
n

=
1
e

+
lnn
2en

+
2 + log(2π)

2en
+O

(
ln2 n

n2

)
(2)

Now, since Ln = ϕn + (−1)nϕ−n with ϕ = 1+
√

5
2 , we see immediately that

n
√
Lm

n = ϕm

(
1 +O

(
1

nϕ2n

))
So, combining the above results we see that

an =
n

ϕm

(
1 +O

(
1

nϕ2n

))
(3)

bn = ϕm

(
1
e

+
lnn
2en

+
ln(2π)
2en

)
+O

(
ln2 n

n2

)
(4)

cn = ϕm

(
1
e

+
lnn
2en

+
2 + ln(2π)

2en

)
+O

(
ln2 n

n2

)
(5)

It follows that

F (bn) = F

(
ϕm

e

)
+ F ′

(
ϕm

e

)
lnn+ ln(2π)

2en
ϕm +O

(
ln2 n

n2

)
F (cn) = F

(
ϕm

e

)
+ F ′

(
ϕm

e

)
lnn+ 2 + ln(2π)

2en
ϕm +O

(
ln2 n

n2

)
So, since F ′(t) = Γ(t) we get

F (cn)− F (bn) = Γ
(
ϕm

e

)
ϕm

en
+O

(
ln2 n

n2

)
Thus,

I(n) = an(F (cn)− F (bn)) =
1
e
Γ
(
ϕm

e

)
+O

(
ln2 n

n

)
That is lim

n→∞
I(n) =

1
e
Γ
(
ϕme−1

)
, which is the desired conclusion.

Also solved by Albert Stadler, Switzerland; Nicuşor Zlota, Traian Vuia
Technical College, Focşani, Romania; Ángel Plaza, Spain; Ramya Dutta,
Chennai Mathematical Institute (student), India; Moti Levy, Rehovot,
Israel and the proposers.

122. Proposed by Mohammed Aassila, Strasbourg, France. Choose 321 different
points inside a unit cube. Prove that 4 of these points lie inside some sphere of
radius 4

23 .

Solution by the proposer.

Let n and k be positive integers, let r be a positive real number, and suppose
there are n points X1, X2, · · · , Xn in the unit cube such that no k + 1 of them
belong to a ball of radius r. Let Bi be the ball of radius r centered at Xi and
B = B1 ∪ B2 ∪ · · · ∪ Bn. No point belongs to k + 1 of the Bi’s. For if, say,
P belonged to B1 ∩ B2 ∩ · · · ∩ Bk+1, then X1, X2, . . . , Xk+1 would all belong to
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the ball of radius r centered at P , contradicting the hypothesis. Hence we have
k|B| ≥ |B1|+ |B2|+ · · ·+ |Bn|, that is :

|B| ≥ 4
3
π · r3 · n

k
, (1)

where |Bi| denotes the volume of the ball Bi. On the other hand, since B is
contained in the “rounded cube” consisting of all points at distance at most r from
the unit cube, we have :

|B| ≤ 1 + 6r + 3πr2 +
4
3
πr3. (2)

Thus, combining (1) and (2) gives :

n ≤ k

(
3

4πr3
+

9
2πr2

+
9
4r

+ 1
)
.

For k = 3 and r = 0.1739, we get n < 320.0988..., so for 321 points inside a unit
cube, 4 of them will lie inside some sphere of radius 0.1739 < 4

23 .

Also solved by Ramya Dutta, Chennai Mathematical Institute (student),
India.

123. Proposed by Sava Grozdev and Deko Dekov (Jointly), Bulgaria. Recall the
definition of a hexyl triangle, See [1]. Given a triangle ABC and the Excentral
triangle PaPbPc of 4ABC. Let Ka be the point in which the perpendicular to
AB through Pb meets the perpendicular to AC through Pc. Similarly define Kb
and Kc. Then triangle KaKbKc is known as the Hexyl Triangle. Prove that the
Hexyl triangle is similar to the Pedal Triangle of the inverse of the Incenter in the
Circumcircle. The reader may find a number of theorems without proofs about the
hexyl triangle in [2]. The reader could find the proofs of these theorems and submit
them for publication. This problem and the theorems in [2] are discovered by the
computer program “Discoverer”, created by the authors.

References

[1]: E. W. Weisstein, MathWorld - A Wolfram Web Resource, http://mathworld.
wolfram.com/HexylTriangle.html

[2]: S. Grozdev and D, Dekov, Computer-Discovered Mathematics: Hexyl-
Anticevian Triangles, www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-
Triangles-pp.60-69.pdf

Solution by the proposers.

We use barycentric coordinates. For a survey on barycentric coordinates see [2].
Given triangle ABC with side lengths a = BC, b = CA and c = AB. The barycen-
tric coordinates of the inverse of the Incenter in the Circumcircle are given in [2],
article X(36). Given a point P , the barycentric coordinates of the pedal triangle
of P are given in [2], 4.4, page 50. By using these formulas we easily obtain the
barycentric coordinates of the pedal triangle PaPbPc of the inverse of the Incenter
in the Circumcircle as follows:

Pa = (0, (a+ b− c)(a2 + b2 − c2 − 2ab+ bc), (a+ c− b)(a2 + c2 − b2 − 2ac+ bc)),

P b = ((a+ b− c)(a2 + b2 − c2 − 2ab+ ac), 0, (b+ c− a)(b2 + c2 − a2 − 2bc+ ac))

Pc = ((a+ c− b)(a2 + c2 − b2 − 2ac+ ab), (b+ c− a)(b2 + c2 − a2 − 2bc+ ab), 0).

http://mathworld.wolfram.com/HexylTriangle.html
http://mathworld.wolfram.com/HexylTriangle.html
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
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We calculate the side lengths of triangle PaPbPc by using the distance formula
(See [2], 7.1) as follows. Denote

Q =
√
a3 + b3 + c3 − ab2 − ba2 − bc2 − cb2 − ac2 − ca2 + 3abc

Then we have

a1 = |PbPc| =
(b+ c− a)

√
a(a+ b− c)(a+ c− b)

2Q
,

b1 = |PcPa| =
(a+ c− b)

√
b(b+ c− a)(a+ b− c)

2Q
,

c1 = |PaPb| =
(a+ b− c)

√
c(b+ c− a)(a+ c− b)

2Q
.

The side lengths of the Hexyl triangle are given in [1], Theorem 5.2, as follows:

a2 = |KbKc| = 2a
√
bc√

(c+ a− b)(a+ b− c)
,

b2 = |KcKa| = 2b
√
ca√

(a+ b− c)(b+ c− a)
,

c2 = |KaKb| = 2c
√
ab√

(b+ c− a)(c+ a− b)
.

We denote
ka =

a1
a2
, kb =

b1
b2
, kc =

c1
c2
.

Now it is easy to see that ka = kb and kb = kc. Hence ka = kb = kc, that is, the
lengths of corresponding sides of the triangles are proportional. Denote by k the
ratio of similarity. Then

k = ka = kb = kc =
(a+ b− c)(b+ c− a)(c+ a− b)

4Q
√
abc

References

[1] S. Grozdev and D. Dekov, Computer Discovered Mathematics: Hexyl-Anticevian Triangles,
International Journal of Computer Discovered Mathematics, 2015, vol. 0, no 0, 60-69. http://

www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf.
[2] C. Kimberling, Encyclopedia of Triangle Centers - ETC, http://faculty.evansville.edu/

ck6/encyclopedia/ETC.html.

[3] P. Yiu, Introduction to the Geometry of the Triangle, 2001, new version of 2013, http:

//math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf

Also solved Michel Bataille, Rouen, France.

http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://www.journal-1.eu/2015/01/Grozdev-Dekov-Hexyl-Anticevian-Triangles-pp.60-69.pdf
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf
http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf


425

——————————————————————————————————-
MATHCONTEST SECTION

——————————————————————————————————-

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
85. Prove that

lim
n→∞

n

(
π

4
− n

∫ 1

0

xn

1 + x2n
dx

)
=
∫ 1

0

f(x) dx,

where f(x) = arctan x
x if x ∈ (0, 1] and f(0) = 1.

86. Define the sequence a0, a1, . . . inductively by a0 = 1, a1 = 1
2 , and

an+1 =
na2

n

1 + (n+ 1)an
, ∀n ≥ 1.

Show that the series
∞∑

k=0

ak+1

ak
converges and determine its value.

87. Let f : [0,∞) → R be a periodical function, with period 1, integrable on
[0, 1]. For a strictly increasing and unbounded sequence (xn)n≥0, x0 = 0, with
limn→∞(xn+1 − xn) = 0, we denote r(n) = max{k | xk ≤ n}.
a) Show that:

lim
n→∞

1
n

r(n)∑
k=1

(xk − xk+1)f(xk) =
∫ 1

0

f(x) dx

b) Show that:

lim
n→∞

1
lnn

r(n)∑
k=1

f(ln k)
k

=
∫ 1

0

f(x) dx

88. Find all functions f : R+ → R+ such that (x+y)f(2yf(x)+f(y)) = x3f(yf(x))
for all x, y ∈ R+.

89. Find all real positive solutions (if any) to

x3 + y3 + z3 = x+ y + z, and

x2 + y2 + z2 = xyz.
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Solutions

80. Given is the square matrix A = (ak,l) of order n ≥ 2 with elements ak,l =
(k − l)3. Find the rank of the matrix.

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. The answer is 2 for n = 2, 3 and 4 for n ≥ 4.

Indeed, consider the matrices Bn ∈Mn×4(R) and D ∈M4×4(R) defined as follows

D =


0 0 0 −1
0 0 3 0
0 −3 0 0
1 0 0 0

 Bn =


1 1 1 1
1 2 22 23

1 3 32 33

...
...

...
...

1 n n2 n3


It is just a verification that A = BnDB

T
n . Now, since rank(Bn) = min(n, 4) we

conclude that rank(A) ≤ min(n, 4).
• for n ≥ 4 the matrix B4DB

T
4 is an invertible 4 × 4 sub-matrix of A so

rank(A) ≥ 4, and consequently rank(A) = 4 in this case.

• for n = 2 we have A =
[
0 −1
1 0

]
so rank(A) = 2 in this case.

• for n = 3 we have A =

0 −1 −8
1 0 −1
8 1 0

 and rank(A) = 2 in this case also.2

81. Find the sum
∞∑

n=0

1
n! (n4 + n2 + 1)

.

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. The answer is e/2.

Note that for n ≥ 0 we have
2

n!(n4 + n2 + 1)
=

1
(n+ 1)!

+
n

(n+ 1)!(n(n+ 1) + 1)
− n− 1
n!((n− 1)n+ 1)

.

Thus,
∞∑

n=0

2
n!(n4 + n2 + 1)

= e− 1 + 1 = e

and the announced conclusion follows. 2
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Also solved by Rafik Zeraoulia, Algeria; Michel Bataille, Rouen, France
and Arkady Alt, San Jose, California, USA.

82. In descartes co-ordinate system with origin O given are the ellipse
x2

a2
+
y2

b2
=1

and a point M0 on it. If M is a point on the ellipse, compute the maximal area of
the triangle OM0M .

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria.

The answer is ab/2. Consider the parametrization t 7→ M(t) =
[
a cos t
b sin t

]
of the

ellipse. and suppose that M0 = M(t0) for some t0 ∈ R. Now the area A(t) of
4OM0M(t) is given by

A(t) =
1
2

∣∣∣det(
−−−→
OM0,

−−−−→
OM(t))

∣∣∣ = 1
2

∣∣∣∣det
[
a cos t0 a cos t
b sin t0 b sin t

]∣∣∣∣ = ab

2
| sin(t− t0)|

Thus the maximum value of A(t) is ab/2 and it is attained when t = t0 + π
2 .

Solution 2 by Arkady Alt, San Jose, California, USA.

Let M0 (x0, y0) and M (x, y) .Then
x2

0

a2
+
y2
0

b2
= 1,

x2

a2
+
y2

b2
= 1 and by Cauchy

Inequality

we have [OM0M ] =
1
2

∣∣∣∣det
(
x y
x0 y0

)∣∣∣∣ = 1
2
|xy0 − x0y| =

1
2

∣∣∣x
a
· ay0 +

y

b
· (−bx0)

∣∣∣ ≤
1
2

√
x2

a2
+
y2

b2
·
√
a2y2

0 + b2y2
0 =

1
2

√
a2y2

0 + b2y2
0 =

ab

2

√
x2

0

a2
+
y2
0

b2
=
ab

2
.

Since equality in Cauchy Inequality occurs iff
(x
a
,
y

b

)
= k (ay0,−bx0) then

x = ka2y0, y = −kb2x0 then by replacing (x, y) in
x2

a2
+
y2

b2
= 1 with

(
ka2y0,−kb2x0

)
we obtain k2

(
a2y2

0 + b2x2
0

)
= 1 ⇐⇒ k2a2b2

(
x2

0

a2
+
y2
0

b2

)
= 1 =⇒ k =

1
ab

=⇒

x =
ay0
b
, y = −bx0

a
.

Since for (x, y) =
(
ay0
b
,−bx0

a

)
we have

x2

a2
+
y2

b2
=

a2y02

b2

a2
+

b2x2
0

a2

b2
=
y2
0

b2
+
x2

0

a2
= 1

and
1
2
|xy0 − x0y| =

1
2

∣∣∣∣ay0b · y0 − x0 ·
(
−bx0

a

)∣∣∣∣ = ab

2

∣∣∣∣y2
0

b2
+
x2

0

a2

∣∣∣∣ = ab

2

then max [OM0M ] =
ab

2
.

Also solved by Michel Bataille, Rouen, France.

83. Let P be the sum of all 2 × 2 matrices whose elements are the integers 0, 1, 2
and 3, without repetition. Find the matrices:
a) S = 1

36P ;
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b) S2015;

c) S2015 −M2015, where M =
(

1 −
√

3√
3 1

)
.

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Michel Bataille, Rouen, France.

a) The matrix P is the sum of 4! = 24 matrices (as many as permutations of
0, 1, 2, 3). The (1, 1) entry is 0 (resp. 1, resp. 2, resp. 3) in 3! = 6 of them. Hence
the (1, 1) entry of P is 6×0+6×1+6×2+6×3 = 36. In the same way, the other

entries of P equal 36. It follows that P = 36J where J =
(

1 1
1 1

)
and so S = J .

b) By induction, we readily find that Jn = 2n−1J for every positive integer n. It
follows that

S2015 =
1

362015
P 2015 =

1
362015

· 362015 · J2015 = 22014J =
(

22014 22014

22014 22014

)
.

c) It is easily checked that the matrix M satisfies M3 = −8I where I is the 2 × 2
unit matrix. As a result,

M2015 = (M3)671 ·M2 = (−8I)671 ·M2 = −22013M2.

Thus, using M2 =
(
−2 −2

√
3

2
√

3 −2

)
,

S2015 −M2015 = 22013(2J +M2) = 22014

(
0 1−

√
3

1 +
√

3 0

)
.

84. The function f(x) has a derivative in the interval [0, 2015] and f(0) = f(2015) =
0. Prove the existence of such numbers x, y ∈ (0, 2015), that f ′(x) = 2015f(x) and
f(y) = 2015f ′(y).

(BULGARIAN NATIONAL UNIVERSITY OLYMPIAD 2015)

Solution by Henry Ricardo, New York Math Circle, USA.

Consider the function g(t) = e−2015tf(t). Then we have g(0) = g(2015) = 0. By
Rolle’s theorem, there exists x ∈ (0, 2015) such that

0 = g′(x) = e−2015x (f ′(x)− 2015f(x)) ,

which implies that f ′(x) = 2015f(x).

Similarly, the function h(t) = e−
t

2015 f(t) satisfies the hypotheses of Rolle’s theorem,
and so there exists y ∈ (0, 2015) such that

0 = h′(y) = e−
y

2015

(
f ′(y)− 1

2015
f(y)

)
.
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Consequently, f(y) = 2015f ′(y).

Comment. More generally, if f is differentiable on [a, b] and f(a) = f(b) = 0,
then for any real number λ there is an x ∈ (a, b) such that λf(x) + f ′(x) = 0.

Proof. The function P (t) = eλtf(t), t ∈ [a, b], satisfies the conditions of Rolle’s the-
orem. Hence there is a number x ∈ (a, b) such that 0 = P ′(x) = (λf(x) + f ′(x)) eλx.
Consequently, λf(x) + f ′(x) = 0.

Also solved by Michel Bataille, Rouen, France.
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A Generalization of the Griffiths’ theorem

for conics with intersecting diameters

Sava Grozdev, Veselin Nenkov

Abstract. The paper considers a generalization of the Griffiths’ theorem from the
geometry of the triangle.
Keywords: Triangle, conic, pedal circle, pedal curve, Feuerbach configuration,
Euler curve.

1. Introduction

The present paper generalizes a remarkable fact from the geometry of the triangle,
known as Griffiths’ theorem. The theorem itself is connected with the notion of
a pedal circle of a point with respect to a given 4ABC. Remind that if a point
P is not on the circumcircle of 4ABC, then the pedal circle of P with respect to
4ABC is the circle, determined by the feet of the perpendiculars from P to the
lines BC,CA and AB. The GRIFFITHS’ THEOREM says: When P moves along
a line through the circumcenter of 4ABC, then the pedal circle of P with respect to
4ABC passes through a fixed point (the Griffiths’ point) on the nine-point circle
(the Euler circle). Two proofs of the Griffiths’ theorem with complex could be
found in [11] and [6], while a synthetic proof is included in [5]. The generalization
in the present paper is connected with the generalization of certain notions which
are recalled in the sequel.

2. Generalization of some notions from the geometry of the
triangle

Barycentric coordinates with respect to a given4ABC will be used, namelyA(1, 0, 0),
B(0, 1, 0) and C(0, 0, 1). The midpoints of the sidesBC,CA andAB areMa(0, 1

2 ,
1
2 ),

Mb( 1
2 , 0,

1
2 ) and Mc( 1

2 ,
1
2 , 0), respectively. Instead of the circumcircle of4ABC con-

sider an arbitrary circumscribed conic k̄(O) with center O(x0, y0, z0), (x0+y0+z0 =
1) . As shown in [8] and [1], the points on the conic are described by the equation:

(1) k̄(O) : (1− 2x0)x0yz + (1− 2y0)y0zx+ (1− 2z0)z0xy = 0.

Four special points from the 4ABC plane are connected with the center O, see [9],
[10].
If I(xI , yI , zI)(xI + yI + zI = 1) is one of them, than the other three determine a
harmonic triangle of I [12]. The points are presented by

IA

(
− xI

1− 2xI
,

yI

1− 2xI
,

zI

1− 2xI

)
, IB

(
xI

1− 2yI
,− yI

1− 2yI
,

zI

1− 2yI

)
,

IC

(
xI

1− 2zI
,

yI

1− 2zI
,− zI

1− 2zI

)
.
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Note that I, IA, IB and IC are centers of conics k(I), k(IA), k(IB) and k(IC), respec-
tively, which are inscribed in4ABC and are homothetic to k̄(O) [10]. A connection
between the coordinates of O and I is shown in [9], i.e.:

x0 =
(1− 2xI − 2yIzI)x2

I

(1− 2xI)(1− 2yI)(1− 2zI)
,

(2) y0 =
(1− 2yI − 2zIxI)y2

I

(1− 2xI)(1− 2yI)(1− 2zI)
,

z0 =
(1− 2zI − 2xIyI)z2

I

(1− 2xI)(1− 2yI)(1− 2zI)
.

Using (1) and (2), another writing of the equation of k̄(O) is possible:

(3) k̄(O) : x2
Iyz + y2

Izx+ z2
Ixy = 0

Let G be the gravity center of 4ABC. The center O determines the point H(1−
2x0, 1− 2y0, 1− 2z0) uniquely, which comes from the vector equation

−−→
GH = 1

2

−−→
GO

[7], [1]. If Ha = AH∩BC, Hb = BH∩CA, and Hc = CH∩AB, then the six points
Ma,Mb,Mc,Ha,Hb,Hc and the midpoints of the segments AH,BH and CH (nine
points totally) belong to a conic Ω, which is a generalization of the Euler circle of
4ABC. This conic is called to be Euler curve of the point H with respect to 4ABC
[7], [1]. Additionally, we will say that Ω is the Euler curve of 4ABC, associated
to k̄(O). As shown in [1], the equation of Ω could be written in the following way:

(4) Ω : (1− 2y0)(1− 2z0)x2 + (1− 2z0)(1− 2x0)y2 + (1− 2x0)(1− 2y0)z2

−2(1− 2x0)x0yz − 2(1− 2y0)y0zx− 2(1− 2z0)z0xy = 0
Rewrite (4) in the form:

(4′) Ω : 4(1− 2x0)x0yz + 4(1− 2y0)y0zx+ 4(1− 2z0)z0xy

− [(1− 2y0)(1− 2z0)x+ (1− 2z0)(1− 2x0)y + (1− 2x0)(1− 2y0)z]
(x+ y + z) = 0

Substitute the coordinates O from (2) and (4′), to obtain the equation of Ω in the
form:

(5) Ω : 4(x2
Iyz + y2

Izx+ z2
Ixy)

− [(1− 2xI − 2yIzI)x+ (1− 2yI − 2zIxI)y + (1− 2zI − 2xIyI)z]
(x+ y + z) = 0

The curve Ω touches the inscribed curves k(I), k(IA), k(IB) and k(IC), see [9]. For
this reason we say that the curves k̄(O), k(I).k(IA), k(IB), k(IC) and Ω belong to
a Feuerbach configuration. Additionally, we say that Ω is an Euler curve of the
Feuerbach configuration.
Let P (xP , yP , zP )(xP + yP + zP = 1) be a point in the plane of 4ABC, while
the lines pa, pb and pc be parallel to OMa, OMb and OMc, respectively and Pa =
pa∩BC, Pb = pb∩CA and Pc = pc∩AB. If P ∈ k̄(O), see [7], the points Pa, Pb and
Pc are collinear lying on the line sp, which is called Simson line of P with respect
to k̄(O). If P /∈ k̄(O), then the point Q(xQ, yQ, zQ) is determined uniquely and its
coordinates are:

(6) xQ =
x2

IyP zP

ϑ(P )
, yQ =

y2
IzPxP

ϑ(P )
, zQ =

z2
IxP yP

ϑ(P )
.
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where

(7) ϑ(P ) = x2
IyP zP + y2

IzPxP + z2
IxP yP .

The point Q is called to be conjugated to P with respect to the Feuerbach configu-
ration under consideration [2]. Let the lines qa, qb and qc be parallel to OMa, OMb

and OMc, respectively, and Qa = qa ∩ BC, Qb = qcb ∩ CA and Qc = qa ∩ AB.
Then the points Pa, Pb, Pc, Qa, Qb and Qc belong to a conic πP , which is called to
be pedal curve of the points P and Q with respect to the Feuerbach configuration
or with respect to k̄(O) [2]. As shown in the last paper, the equation of the pedal
curve πP is of the form:

(8) 4ϑ(P )(x2
Iyz + y2

Izx+ z2
Ixy)− (a11x+ a22y + a33z)(x+ y + z) = 0

where

a11 =
[
(1− 2xI − 2yIzI)yP + 2y2

IzP

] [
(1− 2xI − 2yIzI)zP + 2z2

IyP

]
xP ,

a22 =
[
(1− 2yI − 2zIxI)zP + 2z2

IxP

] [
(1− 2yI − 2zIxI)xP + 2x2

IzP

]
yP ,

a33 =
[
(1− 2zI − 2xIyI)xP + 2x2

IyP

] [
(1− 2zI − 2xIyI)yP + 2y2

IxP

]
zP ,

while ϑ(P ) is expressed by (7).

3. A generalization of the Griffiths’ theorem

Let M(λ, µ, ν)(λ + µ + ν = 1) be a point on the circumcurve k̄(O), M ′ be the
diametrically opposite to M on k̄(O). According to (3) we have:

(9) x2
Iµν + y2

Iνλ+ z2
Iλµ = 0

It is proved in [3] that the Simson lines sM and sM ′ of the points M and M ′ have
a common point T on the Euler curve Ω. The coordinates of this point are:

xT =
(1− 2x0)(µz0 + νy0 − µν)

2y0z0

(10) yT =
(1− 2y0)(νx0 + λz0 − νλ)

2z0x0

zT =
(1− 2z0)(λy0 + µx0 − λµ)

2x0y0
Taking into account the relationship between the coordinates of the centers O and
I, which is expressed by (2), we find the coordinates of T by means of (10):

xT =
µωzz

2
I + νωyy

2
I − µν∆

2yIzI

(11) yT =
νωxx

2
I + λωzz

2
I − νλ∆

2zIxI

zT =
λωyy

2
I + µωxx

2
I − λµ∆

2xIyI

where

ωx = 1− 2xI − 2yIzI , ωy = 1− 2yI − 2zIxI , ωz = 1− 2zI − 2xIyI ,

∆ = (1− 2xI)(1− 2yI)(1− 2zI).
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Further, we state the task to find all points P (xP , yP , zP )(xP + yP + zP = 1) from
the plane of 4ABC, whose pedal curves pass through T . Since T is on Ω, (5) and
(8) imply that:

4ϑ(P )(x2
IyT zT + y2

IzTxT + z2
IxT yT )− (a11xT + a22yT + a33zT ) = 0

Substitute (11) in the last equation and use (9). We obtain:
1

x2
Iy

2
Iz

2
I

[
(µωzz

2
I − νωyy

2
I )xP + (νωxx

2
I − λωzz

2
I )yP + (λωyy

2
I − µωxx

2
I)zP

]
[
(µωzz

2
I − νωyy

2
I )x2

IxP + (νωxx
2
I − λωzz

2
I )y2

IyP + (λωyy
2
I − µωxx

2
I)z

2
IzP

]
= 0

It follows that the pedal curve of P passes through T , when P is on the line

(12) χlP : (µωzz
2
I − νωyy

2
I )xP + (νωxx

2
I − λωzz

2
I )yP + (λωyy

2
I − µωxx

2
I)zP = 0

or it is on the second degree circumcurve of 4ABC

(13) χP : (µωzz
2
I − νωyy

2
I )x2

IxP + (νωxx
2
I − λωzz

2
I )y2

IyP + (λωyy
2
I − µωxx

2
I)z

2
IzP

= 0
It remains to justify the line lP and the curve χP .
The diameter MO of k̄(O) has an equation, determined by∣∣∣∣∣∣

λ µ ν
x0 y0 z0
x y z

∣∣∣∣∣∣ = 0

Figure 1.

Substitute the coordinates of O from (2). We obtain (12). Consequently, lP is
the diameter MO of k̄(O). Thus, we come to the following generalization of the
Griffiths’ theorem. See Figure 1.
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Theorem 1. If a point moves on a line through the circumcenter of 4ABC with
respect to a circumcurve k̄(O), then the pedal curve of this point with respect to
4ABC passes through a fixed point on the Euler circle with respect to the Euler
curve of 4ABC, associated to k̄(O).
Note that if the point P and its conjugate Q with respect to k̄(O) have one and
the same pedal curve, then Q also belongs to the set of points, whose pedal curves
pass through T . It is of interest to find the locus of the conjugated point Q when P
moves on the diameter MO. The two conjugated points could be replaced by each
other. For this reason we could consider the point Q as moving on lP and now the
task is to find the locus of P . Further, substitute the coordinates of Q from (6) to
(12). After some manipulations we obtain equation (13). In such a way we come
to:
Theorem 2. The set of all points, whose pedal curves pass through a point T on
the Euler curve Ω, consists of the diameter lP of k̄(O) and the circumcurve χP of
4ABC.
Of course, in theorem 2 each pedal curve should be counted twice - as a pedal curve
of the point P on the diameter of k̄(O) and as a pedal curve of the point Q , which
is conjugated to P with respect to k̄(O). It is interesting to discover the type of
the curve χP and to find some of its properties. For the purpose some properties
of the second degree curves in barycenric coordinates are revised.

4. Asymptotic directions and centers of second degree curves in
barycentric coordinates

Take the equation of a curve in the plane of 4ABC:

(14) k : a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a23yz + 2a31zx = 0

Putting z = 1− x− y , we get:

(15) k : (a11 + a33 − 2a31)x2 + (a22 + a33 − 2a23)y2

+2(a12 − a31 − a23 + a33)xy + 2(a31 − a33)x+ 2(a23 − a33)y + a33 = 0

Consider (15) as an equation in an affine coordinate system. A vector ~a(u, v), whose
coordinates are determined with respect to the same affine coordinate system as
the curve k′ with equation

k′ : a′11x
2 + a′22y

2 + 2a′12xy + 2a′31x+ 2a′23y + a′33 = 0,

is asymptotic to k′ if and only if a′11u
2 + a′22v

2 + 2a′12uv = 0. From here and from
(15) we have

(a11 + a33 − 2a23)u2 + (a22 + a33 − 2a23)v2 + 2(a12 − a31 − a23 − a33)uv = 0

With respect to 4ABC the vector ~u has the following barycentric coordinates
~a(u, v, w = −u − v). Substitute u2 = −uv − wu and v2 = −uv − vw in the last
equation to obtain:

(16) (a22 + a33 − 2a23)vw + (a33 + a11 − 2a31)wu+ (a11 + a22 − 2a12)uv

Thus, it is established that the vector ~a(u, v, w) is asymptotic to the curve k with
equation (14) if and only if the coordinates of ~a(u, v, w) satisfy (16).
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It is shown in [4] that the barycentric coordinates of the center of the curve k with
equation (14) are solutions of the following linear system:

(17)


(a11 − a31)x+ (a12 − a23)y + (a31 − a33)z
(a12 − a31)x+ (a22 − a23)y + (a23 − a33)z
x+ y + z = 1

5. Some properties of the curve χP

Applying (17) to the equation (13) of the curve χP , we obtain that the coordinates
of its center are expressed by (11). Consequently, T is the center of χP .
According to [3] the vector ~p0(λ(νy0−µz0), µ(λz0− νx0), ν(µx0−λy0)) is collinear
with the Simson line sM of the point M . On the other hand, taking into account
(2), we have that the vector

~p1 : λ(µωzz
2
I − νωyy

2
I ), µ(νωxx

2
I − λωzz

2
I ), ν(λωyy

2
I − µωxx

2
I)

is collinear with the line sM . (13), (16) and the coordinates of ~p1 imply that ~p1 is
from the asymptotic direction of χP if and only if (9) is satisfied, i.e. M ∈ k̄(O).
But sM passes through the point T (center of χP ), thus concluding that this line
is an asymptote of χP . Analogously, the Simson line sM ′ of M ′ is an asymptote of
χP . In such a way it is established
Theorem 3. The curve χP is hyperbola with center T and with asymptotes the
Simson lines of the points M and M ′.
It is shown in [3] that only one more Simson line passes through the point T , namely
the Simson line of the point

U ′(2(x0 + xT )− 1, 2(y0 + yT )− 1, 2(z0 + zT )− 1)

on k̄(O). Substitute (2) and (11) in the coordinates of U ′ and use the results for
the left hand side of (13). It follows that U ′ is on χP and we have the following
Theorem 4. The hyperbola χP and the circumscribed curve k̄(O) have common
points A,B,C and U ′.

6. Conclusion

Note, that together with the generalization of the Griffiths’ theorem we have deter-
mined the whole set of the points, whose pedal curves pass through a fixed point on
the Euler curve. In fact it is established that outside the diameters of k̄(O) there is
no new pedal curve passing through a fixed point on the Euler curve. Particularly it
follows that in case a point P moves on a diameter d of the circumcircle of 4ABC,
then its isogonally conjugate moves on a hyperbola χP with a center, which is the
common point of the Simson lines of the extremities of the diameter d and the Sim-
son lines are asymptotes of the hyperbola χP . Also note, that the proposed proof is
not valid for diameters of a circumscribed k̄(O), which have no common point with
k̄(O), since it has been applied essentially the existence of the point M(λ, µ, ν) and
all the properties of the circumscribed curves that follow from here. On the other
hand, investigations in dynamic geometry (with GEOMETER’S SKATCHPAD for
example) show that the generalization is still valid. The hyperbola χP is replaced
by an ellipse or a parabola but the proof itself needs another approach.
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——————————————————————————————————-
JUNIOR PROBLEMS

——————————————————————————————————-

Solutions to the problems stated in this issue should arrive before June 10, 2016.

Proposals
46. Proposed by D.M. Bǎtineţu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzǎu, Ro-
mania. Solve in real numbers the equation

1
x− 1

+
2

x− 2
+

3
x− 3

+
4

x− 4
= 2x2 − 5x− 4.

47. Proposed by Pham–Thanh Hung, Math. Dept. “Can Tho City” Vietnam. Let
a, b, c be positive real numbers. Prove that(

a

b+ c

)2

+
(

b

c+ a

)2

+
(

c

a+ b

)2

+
10(a+ b− c)(b+ c− a)(c+ a− b)

(a+ b)(b+ c)(c+ a)
≥ 2.

48. Proposed by Titu Zvonaru, Comǎneşti, Romania. Let P be a point on the
hypotenuse BC of the right–angled triangle ABC. If X and Y are the intersections
of AP with the external common tangent lines to the circumcircles of the triangles
ABP and ACP, prove that XY = AP

√
2 if and only if BC = AB

√
2.

49. Proposed by Armend Sh. Shabani, University of Prishtina, Department of
Mathematics, Republic of Kosova. Solve the equation

3 · 5x+1 + 11 · 3x−1 + 5 · 2x + 2x−2 = 2016.

50. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathe-
matics, Republic of Kosova. Let p be prime number such that p ≡ 7( mod 8).
We define A =

{
1, 2, ..., p−1

2

}
and f(k) =

∣∣∣p ⌊ 2k+p−1
2p

⌋
− 2k−1

∣∣∣ for all k ∈ A and
p−1
2 is prime number, where bxc is greatest integer not greater than x. Prove that
f(A) = A.

Solutions

41. Proposed by D.M. Bătineţu-Giurgiu, ”Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, ”George Emil Palade” General School, Buzău, Ro-
mania. Let a, b, c be positive real numbers. Show that a + b + c + 3 3

√
abc ≥

2(
√
ab+

√
bc+

√
ac).
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Solution by Titu Zvonaru, Comǎneşti, Romania.

The Schur inequality is

x(x− y)(x− z) + y(y − z)(y − z) + z(z − x)(z − y) ≥ 0

(1) ⇐⇒ x3 + y3 + z3 + 3xyz ≥ x2y + xy2 + y2z + yz2 + x2z + xz2

Applying the AM - GM inequality we obtain

(2) x2y + xy2 ≥ 2
√
x3y3, y2z + yz2 ≥ 2

√
y3z3, x2z + xz2 ≥ 2

√
x3z3

By (1) and (2) yields

x3 + y3 + z3 + 3xyz ≥ 2
√
x3y3 + 2

√
y3z3 + 2

√
x3z3.

Taking x = 3
√
a, y = 3

√
b, z = 3

√
c, it results that

a+ b+ c+ 3 3
√
abc ≥ 2(

√
ab+

√
bc+

√
ac).

The equality holds if and only if a = b = c.

Also solved by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain;Michel Bataille, Rouen, France; Nicuşor Zlota, Traian Vuia Tech-
nical College, Focşani, Romania; Prishtina Math Gymnasium Problem
Solving Group, Republic of Kosova and the proposers.

42. Proposed by Francisco Javier Garćıa Capitán, I.E.S. Álvarez Cubero de Priego
de Córdoba, Spain . Let ABC be a triangle and P a point inside the internal part of
ABC. Let XY Z be the cevian triangle of P. Find points U, V,W, on the lines Y Z,
ZX, XY such that the lines UV, V W, WU pass respectively through the points
A,B,C.

Solution by Michel Bataille, Rouen, France.

We will say that a point U of the line Y Z is good if the lines AU and CU intersect
ZX and XY respectively at V and W such that B, V,W are collinear. The problem
boils down to determining the good points of Y Z. We show that there are two
good points U1, U2. In part 1, we calculate the barycentric coordinates of U1 and
U2 relatively to ABC and in part 2, we show how to construct the points U1, U2.
Part 1. Let P = (α : β : γ) where α, β, γ > 0 and α + β + γ = 1. Then,
X = (0 : β : γ), Y = (α : 0 : γ), Z = (α : β : 0), hence the equations of Y Z,ZX,XY
respectively are

βγx− γαy − αβz = 0, −βγx+ γαy − αβz = 0, βγx+ γαy − αβz = 0.
Let ` : my + nz = 0 be an arbitrary line through A, intersecting ZY at U and
ZX at V . We readily obtain U = (α(mβ − nγ) : −nβγ : mβγ) and V = (α(mβ +
nγ) : nβγ : −mβγ). Then, BV : mβγx + α(mβ + nγ)z = 0 intersects XY at
W = (−α(mβ + nγ) : 2mβ2 + nβγ : mβγ). Expressing that U is good if and only
if C,U,W are collinear, we obtain the condition∣∣∣∣∣∣

α(mβ − nγ) −α(mβ + nγ) 0
−nβγ 2mβ2 + nβγ 0
mβγ mβγ 1

∣∣∣∣∣∣ = 0.

This condition easily rewrites asm2β2−mnβγ−n2γ2 = 0, that is, (mβ−τnγ)(mβ+
(1/τ)nγ) = 0 where τ = 1+

√
5

2 . Thus, there are two good points U1, U2 obtained as
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the points of intersection with Y Z of the lines τγy+βz = 0 and (−1/τ)γy+βz = 0.
A simple calculation gives

U1 = (α : −βτ : γτ2), U2 = (ατ2 : βτ : γ).

Part 2. Let ΠA be the perspectivity with centre A from line Y Z to line ZX, ΠB

the perspectivity with centre B from line ZX to line XY and ΠC the perspectivity
with centre C from line XY to line Y Z. Clearly, a point U of Y Z is good if and
only if ΠC ◦ ΠB ◦ ΠA(U) = U , that is, if and only if U is a double point of the
projectivity p = ΠC ◦ ΠB ◦ ΠA from the line Y Z to itself. Steiner’s construction
of the double points of such a projectivity is classical [see for example H. Dorrie,
100 Great Problems of Elementary Mathematics, Dover, 1965, p. 255-257]. On the
figure, we have first constructed Z ′ = p(Z), Y ′ = p(Y ) and M ′ = p(M) where M
is the point of intersection of AP and Y Z.

Also solved by the proposer.

43. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. In a multiple–choice–test you are asked to answer four questions.
Question i ∈ {1, 2, 3, 4} has i+ 1 possible answers and each question has only one
correct answer. Answering randomly, what is the probability of giving at least two
correct answers?

Solution by the Prishtina Math Gymnasium Problem Solving Group,
Republic of Kosova.

The solver submitted two correct solutions. We present one of them slightly modi-
fied by the editor. Let P (0) and P (1) be respectively the probability that one gives
no correct answer and just one correct answer. The result is clearly 1−P (0)−P (1).
Letting Pk(0) and Pk(1) respectively the probability that the answer of the k–th
question be uncorrect or correct, clearly we have:

P (0) = P1(0) · P2(0) · P3(0) · P4(0) =
1
2
· 2
3
· 3
4
· 4
5

=
1
5

P (1) = P1(1) · P2(0) · P3(0) · P4(0) + P1(0) · P2(1) · P3(0) · P4(0) + P1(0) · P2(0) ·
P3(1) · P4(0) + P1(0) · P2(0) · P3(0) · P4(1)

=
1
2
· 2
3
· 3
4
· 4
5

+
1
2
· 1
3
· 3
4
· 4
5

+
1
2
· 2
3
· 1
4
· 4
5

+
1
2
· 2
3
· 3
4
· 1
5

=
5
12

Finally,

1− P (0)− P (1) =
23
60
.

Also solved by the proposer.

44. Proposed by Proposed by Armend Sh. Shabani, University of Prishtina, Depart-
ment of Mathematics, Republic of Kosova. Let m be an odd integer greater than
3. If 22n

+ 1 is prime, he can not be expressed as a difference of m-th powers of
two positive integers.

Solution by the the Prishtina Math Gymnasium Problem Solving Group,
Republic of Kosova.
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We assume the contrary 22n

+ 1 = xm − ym, x, y ∈ N.
Then we obtain

22n

+ 1 = (x− y)(xm−1 + . . . ym−1).
Therefore it should be x− y = 1. Then,

22n

+ 1 = (y + 1)m − ym = m(ym−1 +
m− 1

2
ym−2 + . . .) + 1.

It means thatm divides 22n

which is contradiction according to unique factorization
theorem.

Also solved by the proposer.

45. Proposed by Marcel Chiriţă, Bucharest, Romania. Solve in real numbers the
following system: {

22x2−1 + 2y2−2 = 12
32x2−1 + 3y2−2 = 36.

Solution by Michel Bataille, Rouen, France.

We show that the solutions for the pairs (x, y) are(√3
2
,
√

5
)
,
(
−
√

3
2
,
√

5
)
,
(√3

2
,−
√

5
)
,
(
−
√

3
2
,−
√

5
)
,
(√

2, 2), (−
√

2, 2
)
,
(√

2,−2), (−
√

2,−2
)
.

As it is readily checked, it suffices to show that (2, 3) and (3, 2) are the solutions
for (x, y) of the system {

2x + 2y = 12
3x + 3y = 36

The pairs (2, 3) and (3, 2) are obvious solutions for (x, y). We show that there are
no other solutions.
Let (x, y) be an arbitrary solution. Setting X = ex−2, Y = ey−2, we have

X ln(2) + Y ln(2) = 3, X ln(3) + Y ln(3) = 4,

hence X ∈ (0, 31/ ln(2)) (since X ln(2) < 3) and f(X) = 0 where f(u) = uln(3) +(
3− uln(2)

) ln(3)
ln(2) − 4.

A short calculation gives the derivative of f on (0, 31/ ln(2)):

f ′(u) = (ln(3))uln(3)−1

[
1−

(
θ(uln(2))

) ln(3)−ln(2)
ln(2)

]
where θ(t) = 3−t

t .
On (0,∞), the function θ is strictly decreasing with θ

(
3
2

)
= 1. Thus,

f ′(u) > 0⇐⇒ θ(uln(2)) < 1⇐⇒ u > α =
(

3
2

)1/ ln(2)

and so f is strictly decreasing on (0, α] and strictly increasing on [α, 31/ ln(2)). It
is readily checked that 1 ∈ (0, α), e ∈ (α, 31/ ln(2)) and f(1) = 0 = f(e). Therefore
f(u) 6= 0 if u 6= 1, e. It follows that we must have X = 1 or X = e. Since
X = 1 implies Y = 21/ ln(2) = e and x = 2, y = 3 while X = e implies Y = 1 and
x = 3, y = 2, the proof is complete.
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Also solved by Neculai Stanciu, ”George Emil Palade” General School,
Buzǎu, Romania; Ángel Plaza, Universidad de Las Palmas de Gran Ca-
naria, Spain and the proposer.
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