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Problems

152. Proposed by Marian Dinca, Bucharest, Romania and Leonard Giugiuc, Na-
tional College Traian, Drobeta Turnu Severin, Rumania. Let a,b,c and d be the
lenghts of the sides of a convex quadrilateral inscribed in a circle with radius R.
Prove the inequality

a? b2 2 d?

>
b+c+d—a+a+c+d—b+a+b+d—c+a+b+c—d_

153. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let o > 1 and let a,b € R, b # 0. Calculate

1— @ _b \"
3 ne n
dm (1)

154. Proposed by Anastasios Kotronis, Athens, Greece and Haroun Meghaichi,
student, the University of Science and Technology, Houari Boumediene, Algiers,
Algeria. Let m be a positive integer and

S = zn:(—nk <Z> B

k=1

2V2R.

Show that:
1) Spi=—Inn—v— i +0(n?)(n — +00),
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2) Spo= f% —~vlnn — g — 7{—; — 1‘21—7:’ 12_77 + O (n72Inn) (n — 400),
3) There exist real numbers a,,,...,ap and by,—1,..., by such that
m m—1 lnmfk‘fl n
Spm = Z Qe ™ F 0 4 Z bp—fp1—— + O (n_2 In™ ! n) (n — +00).
n
k=0 k=0

and determine them.

155. Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” School, Buzdu, Romania. Let

a € R% and let (Ly)n>0 be Lucas sequence and a positive real sequence such that
lim,, oo 2241 = . Find

n2a,
lim nt1 anJranJrl o anLn
n—0o0 (2n + 1! 2n -1 )"

156. Proposed by Dorlir Ahmeti, University of Prishtina, Republic of Kosovo and
Alezander Gunning, Australia. With (2n — 1)3 same cubes we build a cube. We
say any cube which is still in the cube is if at least three faces of that cube are not
shared with any other cube. We begin by removing a cube (by doing this we will
cause other cubes to become and we may repeat this procedure, removing further
cubes. What is the minimum number of moves required to remove the cube which
is in the centre of cube.

157. Proposed by Cornel Ioan Valean, Timis, Rumania. Prove that

oo oo (2)
23" (c)C(6) ~ HPH) + 73 T = 100(3)¢(5) ~ 2 (B)(6) — 2o¢(8).

nb

1 1
where H(™ =1+ gm T denotes the nth harmonic number.
m nm

158. Proposed by Sava Grozdev, VUZF University of Finance, Business and En-
trepreneurship, Bulgaria, Hiroshi Okumura, Department of Mathematics, Yamato
University, Osaka, Japan and Deko Dekov, Stara Zagora, Bulgaria . Given triangle
ABC with side lengths BC = a,CA = b and AB = c. Prove that the pedal triangle
of the inverse of the orthocenter of triangle ABC in the Circumcircle of triangle
ABC is similar to the orthic triangle of triangle ABC. Find the similitude ratio as
function of a, b, c.



561

Solutions

No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

145. Proposed by Paolo Perfetti, Department of Mathematics, University Tor Ver-
gata, Rome, Italiy. Let 0 < x < 1. Prove that 2% < 22 —x + 1 — 22(1 — 2)*.
Solution 1 by Moti Levy, Rehovot, Israel.

Let y =1 — . Then our original inequality is equivalent to

-V <l—y+y?—y*+20° 45 0<y<1.

By taking the first three terms of the binomial expansion (the inequality is justified
since the absolute values of the terms are decreasing),

- 1—y) (- 1 1
(1-y) yé17(1fy)y+wy2:1*y+y2*§y3+§y4.
Hence, it is enough to show that
Ly 14 5 6
_ _ <92 _
QZJ +2y > 2y Yy

which is equivalent to

1
2=y +50-y) =20 for 0<y<l

Solution 2 by the proposer. This is a refinement of % < 22 — 2 + 1 (Crux
Mathematicorum, problem 3815, Vol.39(2)). The inequality is equivalent to x Inz <
In(z? =z +1—2%(1 — 2*)) and by using Inz < (z — 1) — 3(z — 1)* + (z — 1)3
which is proved at the end, we come to
1 1
flx)=2x ((:x -1)- 5(:3 —1)% + g(gc - 1)3> —In(2® —z+1-2*1-2%) <0

1 (827 — 43x% + 982° — 1102 + 1423 + 5622 — 372 + 5)(x — 1)?
6 z—1+ 26 — 425 + 62* — 423
(z—1)% g(x)

6  hx)

f(z) =

Now we prove that h(z) < 0 while g(z) is strictly decreasing passing from positive
values to negative values. It follows that f(x) starts decreasing and then increases.
Since f(0) = f(1) = 0, this proves the statement.

h(x) < 0 is equivalent to

x6+6x4+x§4m5+4x3+1, 0<zx<1
and this is in turn implied by
6x* < 32° + 423
which is easy AGM. Indeed
3% + 42® > 2122 = 44/32* > 62*
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Moreover
g (x) = 562° — 25825 + 4902* — 4402° + 422 + 1122 — 37
and we want to show that ¢’(z) < 0 so that g(z) decreases. Since 56z — 5625 < 0,
g(2) <0 <= —2022° + 490z — 4402> + 4222 + 1122 — 37 = G(z) < 0
1

1
Th =4 is
e tangent to G(z) at x 5 + 05

7’(1‘) _ 8781149 _ 213941x 7"(
T 12800000 2560007
so r(xz) < 0 for any 0 < x < 1. Moreover
(161600023 — 222320022 + 740230z + 1054011)(40z — 21)?
G(z) —r(z)=—
12800000
and

0) <0, r(1) < 0.

(16160002% — 222320022 + 740230z + 1054011) >
> (21616000 - 740230 — 2223200)z2 4 1054011 > —36000z> + 1054011 > 0

SO
G(z) —r(z) <0 that is G(z) < r(z) <0
and this concludes the proof of the inequality. The last step is

Inz<(z—1)— %(mf 12+ é(xf 1)3
that is ) )
h(z)=lnz—(z—1)+ i(x —1)2— g(x —1)3 <o.
Since h/(z) = —(x — 1)3/x, h(x) is monotonic increasing and by lim,_q+ h(z) =

—00, h(1) =0, it follows h(xz) < 0 for any 0 < x < 1.
Also solved by Moubinool Omarjee, Paris, France.

146. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n > 1 be an integer. Solve in My (Z) the equation X2"+! — X = [,.
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

Consider am matrix X € My(Z) satisfying X?"+! — X = I,. from

L=X(X-L)(X" '+ + X +1)

we conclude that det(X) and det(X —I5) are integer divisors of 1. But det(X —1I3) =
det(X) —tr(X)+1. It follows that there exists €,¢’ € {—1, 1|} such that det(X) =
and tr(X) =14 ¢€—¢€. Thus

(tr(X),det(X)) € {(1,1),(3,1),(1,-1),(-1,-1)}

and the possible characteristic polynomials of X are

€

Characteristic Polynomial ‘ roots
(a) )\2 —A+1 eiTr 3 e—i7r 3
(b) A2 —3A+1 T—Qf —?gf
2 -5 5
VI Bs i
(d) AT AT 2 2
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On the other hand, any complex eigenvalue X of X must satisfy A2"+t! =14 X\ and
consequently if [A| > 1 then |A”"T" < 2|)| so [A] < 21/ < /2. It follows that
all the eigenvalues of X must belong to the open disk D(0,/2). This excludes the
cases (D), (c¢) and (d) because (3 ++/5)/2 > /2 and (1 +v/5)/2 > /2.

For (a) the eigenvalues of X are {e'™/3,e~"/3}, but if A is one of these eigenvalues
then

3

5= ROH D) =R < PP =1

which contradicts the fact that A2*+1 = 14+ \. Tt follows that the proposed equation
has no solutions in Ms(Z).

Solution 2 by by Michel Bataille, Rouen, France.

We show that there are no solutions. To this aim, we assume that for some X €
My (Z) we have X2+ — X = [,. First, we observe that X cannot be of the form
aly where a € Z. Otherwise we would have a?>"*! = @ + 1, which cannot occur
(either if a € {—1,0,1} or if |a] > 1 since then a prime divisor of a divides a?"*!
but not a + 1). It follows that the minimal polynomial of X is not of degree 1.
Thus, this minimal polynomial is the characteristic polynomial 22 — tx + det(X)
(where t is the trace of X). Another remark is that det(X) € {—1,1}. This is
readily deduced from det(X) - det(X?" — I5) = 1 (since X(X?" — I) = I) with
det(X) and det(X?" — I3) in Z (note that X" — I € M>(Z)). Now, we show
that we are led to a contradiction in the two cases det(X) = 1 and det(X) = —1.
If det(X) = 1, then the polynomial z?"*! — x — 1 is a multiple of the minimal
polynomial 22 — tz + 1. Thus, the complex roots r,% of the latter are also roots
of 2"+ — & — 1. This provides the relations 2"t = r + 1 and 72"t = 1 — 27,

hence r?" = —r and so r + 1 = r - r?® = —2, Therefore 2 +r 4+ 1 = 0 and  must
be a cubic root of unity different from 1. However, from 72"*! = —r2 we obtain
r?»~1 = _1, which is wrong when r is a cubic root of unity. We have reached our
contradiction.

Similarly, if det(X) = —1, the roots s, — of the minimal polynomial 2% — tz — 1
must be roots of 2"t — 2 — 1. This time, we get the relations s?"*! = s + 1 and
s2mtl = ¢27 1. Thus, s = s+ 2 and so s(s +2) =s+ 1, that is, s2 —s —1=0
and s € {1+2\/5’ 1*2\/5}. However, we would have s?"*1 = s 4+ 1 = 52, hence
s?2"~1 = 1, which is obviously wrong. Again, we obtain a contradiction and the
proof is complete.

Also solved by Moti Levy, Rehovot, Israel; Moubinool Omarjee, Paris,
France and the proposer.

147. Proposed by Anastasios Kotronis, Athens, Greece. Let a, be the sequence
defined by the relations

1_’_b—p—l +b—2a n 2a 0
Apt3 — —_— ) a, —ay —_—a, =
+3 n+3 +2 n+3 + n+3
and

-p)?’=p

ag=1,a1 =b—p,as =a+
where a,b € R\ {-2,-2,0,1,...}.
(1) Show that lim,, .., n?™ta, = lf(a—j;).

(2) Find limy, o 1 (np“‘lan S

w) if it exists.
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Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. Note that the recurrence relation defining the
an’s can be written in the following way

(n+3)apnss — (n+2)apye — (b—plansa + (b —2a)ans1 +2aa, =0 (1)

So, if we define G(z) = Y7 a,z™, then it follows from (1) and the initial condi-
tions imposed on ag, a; and as, that

(1-—2)G'(z)+(p— (1 —2)(b+2az))G(x) =0

This proves that x — (1 — a:)_Pe_b””_”’sz(x) is constant (just calculate the deriv-
ative), and since it is equal to 1 for z = 0 we conclude that

G(z) = (1 — z)Peboras’
So, let Log be the principal branch of the logarithm, and define the analytic function
G(z) _ (1 B Z)pebz+az2 _ PLlog(1-=2) ebz+az2
for z € C\ [1,+00). The above discussion shows that G(z) = Y. " a,z" for z in
the open unit disc D(0,1). If fact G is analytic in the interior of any set of the form
Ay =1{zeC:Arg(z— 1) = 6}

bz4az?

where 0 < ¢ < 7/2. Moreover, since k : z — e is an entire function (i.e.

analytic in the hole complex plane), we have
k(z) = k(1) = K'(1)(1 —2) + O(1 — 2)?)
as z — 1, and consequently:
G(z) = k(1)(1 = 2)" =K (1)(1 = )" + 01 - 2)7*?)

as z — 1in Ay \ {1}. Using Corollary 3. from [“Singularity analysis of generating
functions”, Siam J. Disc. Math., Vol. 3(2),pp. 216-240 (1990) by Flajolet and
Odlyzko], we conclude that

an = k(1) (“ P 1> — k(1) <” P 2) +0(n??)

n n

Now, noting that

= " (b + 2a)

(") = e (e +0 ()
p
)

n—p-—2 p+1 1
( ~~ o 0 (w)
Thus
a+b a+b
Pt = et _(104-2b—&-4a)64r -l—i-(’) 1
I'(=p) a'(-p-1) n n?
In particular,
a-+b a+b 2b 4 a+b
lim n?*la, = € , and lim n (np+1an _ > = 7(p+ +da)e
n—oo I'(-p) n—oo I'(-p) 2L(-p—1)
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Solution 2 by by Moti Levy, Rehovot, Israel. Let F (z) := > "  a,2" be the
generating function of the sequence (ay,),~,. We rewrite the recurrence formula
and multiply by 2™.

m+3)ants — (n+3)ante— (b—p—1)ant2 + (b — 2a) any1 + 2a * a, =0,

4 Z (n+3)apt3z"— Z (n+3)apt22"—(b—p—1) Z Apyoz”
n=0 n=0 n=0

o0 o0
+(b—2a) Z Apy12"+2a% Z an2"=0.
n=0 n=0

oo ' S '
Z—2 § an+32n+3 —Z_l E an+22n+2
n=0 n=0

—(b—p)z2 Anaoz" 24 (b—2a) 271 Ana1 2" T +2a% an2"
+ +
n=0 n=0 n=0

:O’

22 (F(z) —ap—arz — a222)/ — 2 Y (F(2) —ag — alz),

—(b—p) 2z ?(F(2) —ap — a12) + (b — 2a) 2~ (F () — ao) + 2aF (z)
=0,

F(z)—ap—aiz— a2z2)/ —2z(F(2) —ag — a12)
—(b—p) (F(2) —ag — a12) + (b — 2a) 2 (F (2) — ag) + 2a2°F (2)
-0,

/

—~

F (2)(1=2)+F(2) (= (b—p)+ (b—2a) 2+ 2a2*) = 0
F (2)(1-2)=F(z) ((b=p) = (b—2a) z — 2az%)
Finally we obtain the differential equation for F' (z),

F'(2) P
Floy ottty FO

InF(z)=bz+az’>+pln(z—1)+c
F(2) = ke 0% (2 — 1)P
1=F(0)=Fk(-1)"

The generating function is
F(2)= a7 bz . (1—2)".

The Darboux’s lemma (see [1] , Theorem 5.3.1 on page 179) is now used to evaluate
the asymptotic growth of the generating function coefficients a,,



566

Theorem. (”Darbouz’s lemma”)
Let v(2) be analytic in some disk |z| < 1+mn, n > 0 and suppose that in a neigh-
borhood of z =1 it has the expansion

v(z) = Zvj (1—2).
320

Let ﬁ ¢ { ..,—2—-1,0,1,2, } Then
{020 @) =1 S 02 40 ()
j=0

_ Uj(n—ﬂ—j - 1) Ay
=0

n

J
azz+bz

is entire and the first terms of its power series are,
o ThE — atb (1 (2 4+ B) (1 — 2) +--).
(1) Set m=0, f=p, Ropeé¢{.—-2-1,0,1,..}, v(z) = e’z g he R;
and apply the Darboux’s lemma above to obtain,
—p—1
a, = e+t <n p > + 0 (n7p72) .
n
Using the well-known asymptotic expansion of the binomial coefficient:
n—p—1 n~P1 +1 +1)(p+2)Bp+1
p N Pt p+ D@ J(p )+“.,
n I'(-p) 2n 24n
arp P [1 L e+l
I'(=p)
which implies

The function e

+p(p+ D+2)Bp+1)

n=¢ o 2402

+~}+O@W”L

—p—1
Qp = €a+bh +0 (n_p_Q) )

and

lim n’*'a, = ——.
A = )

(2) Now we need an extra term.
Setm=1, 8=p, Rope¢{. —-2-1,0,1,..}, v(z) = e®’ b2 g b e R;and
apply the Darboux’s lemma above to obtain

m

0 — Zvj(n—ﬁ;j - 1) L0 (nmh2)

J=0

= eotb [(n_5_1> — (2a+b) (n_z_Q)] +0 (n P73,

aip P pp+1) plp+1)(P+2)Bp+1)
o ’ =

2n 24n?
— (2a + b) e*?

a, =e

p+D(p+2) (P+HP+2)Bp+4)
I'(-p—1)

2n 24n?

{1+

+~l+0@p3y
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o (e - re:j;) = (5 - rff ) o,

lim n(np-irlan— et ) — a+b( p—|— _ 2a+b )
n— oo F( (_p - 1)
ea+b P
= p+1 (7+2a+b).
F(—p)( 15
Reference:

[1] Wilf, Herbert S., ” Generatingfunctionlogy”, 2"? edition, Academic Press, 1992.
Also solved by the proposer.

148. Proposed by  D.M. Batinefu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzdu,
Romania. Find

lim (;UCOShzt ((F(:E + 1))—(Sinh2 0/e _(T(z + 2))—(sinh2 t)/(a;-',—l))) .

r—00

where t € R and T is the Gamma function.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

. inh?
The answer is (sinh? t)es™h" ¢,

Using the well known expansion, in the neighborhood of +o0:
1 1 1
logT(x+1) =xlogx —x + §1oga: + 510g(27r) +0 <)
x
we see immediately that

: 1logx 1 1
1/1’ = — - _
(T(z+1)) exp <logx 1+ 5 o + o log(27) + O (1:2)>

T 1 loga: log® z

and consequently, for a nonzero o we have in the neighborhood of +o0:

o 1 log?
C@+1)* =2 (142 ng—i——log(%r)—i—(’) 8 7
e 2 x?
But
-1
log(1+x):10ga: 1Jrlog(lJrl/:c) 1+l
1+ x log x
1 1
_ ogx+o<og2m>
x x
1
(1+x)a=xa(1+a+o<2>>
x x
Thus
o logz « log? =
D(z+2)~/@) =2 (1 1+2 2 Jog(2
(D(z +2)) ea(+x) Jr2 T +2x0g(ﬂ) +0o 2o
T

s alogx log? x
_ea(1+2 (1+10g\/ ) ) (x?a
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Hence
217 (e + 1)) = (D +2)™*)) = —ae™ + 0 <1g x)
Therefore,
Tim. (ml-a ((I‘(x +1))/@ — (D(x + 2))a/<w+1>)) = —ae®
which is also valid when a = 0. Choosing @ = —sinh?¢ we get the announced
answer.

Solution 2 by by Soumitra Mandal, Chandar Nagore, India.
Since,
D'ALEMBERT

. VI(z+1 . ! ./ n! -
lim # = lim — = lim — = =
T—00 €T n—oo  n n— 00 nm

neN

. (n+1)! 1 1 1
= lim . - i

Now, we have

— sinh? (¢ — sinh? (¢
. /T (x+2) © y /T (x + 2) 1 x+1 © )
1m —_—— = 1m . . =
YT(x+1) z+1 YT(z+1)

u(z) —1
"z—oo lnu(x)

— sinh? (¢
:c+1/1"(l. T 2)) )

=1 where u(z) = ( Y

again,

—wsinh?® ®) — sinh?(¢)
lim (u(x))m _ g [ VEE+2) N ONCET) 1

— sinh? (t)
1) — e~ sinh?(t)

_ sinh?(¥) _sinh?(t)
- lim (xCOSh2(t)<(F(x+1)> T —(r@+2) 7 >>

, sinh? (t) u(x) 1
= lim (zCOSh () (F(x + 1)) 2 — u(x))

Inu(z)

— sinh?(t)
= lim <_ <W> M .1n (u(m))z> _ SinhZ(t)esirl}12(t)
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Solution 3 by Moti Levy, Rehovot, Israel. Let a = cosh?t then our limit
becomes

L= lim 2° ((r(ggﬂ)i)l_“ (F(IH)IH

1 l1—a
Tr— 00 )

1 1—a
1\1-a T (z+2)77
= lim 2° (F(z+1)i) o (L2t

Using the asymptotic expression for I' (z + 1),

I'(zx+1) ~V2nz (Ey,

e
we obtain
T(z+1)7 ~2,
e
1
T (x+2)77 ~ 25
e
Hence
—a 1—a
1 1
L = lim z* ( x—l— >:ea_1 me<1_<x—|— ) )
r—00 r—0o0 €T
i
=e* ! lim —=2 2

T— 00

Applying L’Hopital’s rule

L=¢e*1 lim L
—00 (—Z‘_

24 — pelcosh® t=1)  gsinh® ¢ g2 ¢,

Also solved by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy; Moubinool Omarjee, Paris, France and the
proposers.

149. Proposed by Arkady Alt, San Jose, California, USA. Let D be the set of
strictly decreasing sequences of positive real numbers with first term equal to 1.
oo ‘r +T .
el if
‘rn 1
this series converges and define S(zy) = oo otherwise. Find inf{S(xy)|zy € D}
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and

Technology Damascus, Syria.

pr\ L/
The answer is A(p,r) = def ((erT)> .
r"pP

For given positive p, r and any zy = (21,22,...) € D, let S(zn) = >
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Consider a sequence z(yy € D. For n > 2 we have, using Holder’s inequality:

n—1

n—1 r
DT S S
k pr/(p+r) Tktl
k=1 k=1 Tk+1

pt+r

Z ( pr/(p+r )
=1 k+1
_r_ _p_
n—1 p+r p+r n—1 p+r
<X >
>~ xp k+1
k=1 "k+1 k=1

So we have proved that
p+r p/r
}, (1)

ne1 1+p/r
k=1

On the other hand, using the arithmetic mean-geometric mean inequality, we have
for x,¢t > 0 that

IN

ﬁ n—1 ptr ﬁ
(3 ()™

IN

IL+x  14t(x/t) S (E)t/(1+t)
1+t 1+t ~—\t¢

n—1

Applying this with o =), _, «}. and t = p/r we see that

n—1 1+p/r (14 1)1+t n—1 p/r
> > Dk
k=1

k=2

n—1 1+p/r n p/T
<Z x2> > A(p,r) <—x; +) xz> (2)
k=2

k=1

Or equivalently

Combining (1) and (2) we get

n—1
prrr

> A(p,7) (1 - Z;’i%)w (3)

and this is also valid for n = 2. Now, let us consider two cases:

k=1 xk+1

o If >7, a% = +oo then from the inequality

s ':L,”’

0 S n S
DheoTh T Dh—aTh

we conclude that
r

lim
n—0o0 Zk 2 xk

o If Y77 2} = { < +oo, then clearly lim, .o 2!, = 0 and again

,
T

lim =2—=0

n—0o0 Zk 2 T,
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Combining the above results and letting n tend to infinity in (3) we conclude that
S(xn) > A(p,r), and consequently
inf{S(zn)|zy € D} > A(p,r) (4)
Conversely, consider the sequence ay = (an)n>1 defined by a, = a"~! with a =
1/r
(pf_r) < 1. Clearly we have
0o (r+pn1) 1 1 p+r p/r ptr
S e e () = Aen

aP 1—a” p r

Hence,inf{S(zn)|zny € D} = A(p,r) and the lower bound is in fact attained on a
geometric sequence.

Also solved by the proposer.
150. Proposed by Cornel Ioan Vilean, Timis, Romania. Find

Z 1)t k+n
— k+n’

where H,, = Z?:l 1/j denotes the nth harmonic number.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. We will use a general principle. Consider a an
analytic f in the unit disk D(O7 1), and suppose that its power series expansion is
given by f(z) = Yo7, a,2". Now, using the integral form of the remainder we may
write for |z| < 1 the following

(n)

oo k
Z an+an+k — f(Z) _ Z /
n=1 n=1

Zk+1

o /01(1 — )k FHD (1) dt

It follows that for |w| < 1 we have

1 0o (k) .
; (Z ) v, (Z P e —t>>’“> !
1
= Z/o (f’(terzw(l —1)) — f’(tz))dt
1—

1—w

— |2 flew+ 1 - w) - fi22)]

t=0

3
Now in our case we have a,, = H3 /nand f(z) = > -, %z" Since the series defin-
ing f(—1) does converge by the alternating series test (this is not straightforward
but it can be proved that the coefficients decrease to 0 starting from a certain index),

it is easy to show that uniformly in z € (—1,0) we have >.°0 | a,+x2"+* = O(log® k)
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and the series > 5 (log® k) |w|* is convergent. Hence, we may take the limit as
2z — (=1)" in (1) to obtain

S (fﬁ (—1>”+kHs+k> G e () YT

— n+k 1—w

n=1
Now, the series
k=1 \n=1 n+k

is convergent (another non trivial statement that I will leave to the reader). So,
using Abel’s theorem we conclude that

[~ CDMRHD N f(=1) = f(-w)
Z Z  on+k ] lim_ 1 -w f(=1) (2)
—=\= n w—1 w
Now, we are saved by our calculations in the solution to problem 140 in the previous
issue, where we have shown that

o

xf'(z) = Z H3z"
n=1
B log®(1—xz) 72 log(l —x) Lis(1 — ) — Liz(1)
=— - = +3
1—a 2 11—z 1—2
3 log(z) log?(1 — ) n Lis(x)
2 11—z 1—2
and consequently
, log?(2) w2 3 (.. i 3. 1
/ = — —_—— —_ - —_— _— L5 —_ G —
szg)+ xf'(z) = 5 1 log(2)+2 Liz(2) + 5 log*(2) 2L13(1)—|—2L13( 1)

Recalling that

Lis(2) = £0(3) + 7 — T log*(2)

where for the last one we used the formula 6.7 from “Lewin, L. (1981). Polyloga-
rithms and Associated Functions. New York: North-Holland” to express Liz(2) in
terms of Liz(1/2) and we used formula 6.12 of the same book to evaluate Liz(1/2).
It follows that
9 1 w2
lim (—f'(—2)) = ——¢(3) — = log3(2) + — log(2
dim (= f'(=2)) = = 1500) = 5 log™(2) + - log(2)
So, by the Hospital rule we see that
o fED = fmw) 9 1. 3 m?
lim ——————— = —— — —log”(2) + —log(2
e SC(3) - 5 log’(2) + T log(2) (3)
On the other hand f(—1) is given in the article of I. Mez6, “Nonlinear Euler sums”
in Pacific Journal of Mathematics (Vol. 272, No 1,2014), with a sign error in the
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last term:
> )"H? T2, log'2 9
— + —log“2 — — —log?2 4
z:: =15t g los - gle2((3), (4)
Combining (2), (3) and (4) we conclude that
(- 1)n+kH3+k 72 log®2 log?2 9(1 + log4)
L ek ) o T (1og 241 - - 3
;(Z ntk 144+(°g Hlog®2) g =5 1 T

which is the desired conclusion.
Solution 2 by Moti Levy, Rehovot, Israel.

Let F(2) :=> ey doney an ZF+n o |z] < 1. Setting m = k + n and rearranging

the order of summation give
F(z) = H3 — —m ) zm < 1. 1
CEDM AL ENE )
Let f (2) be the generating function of the sequence (Hf;l)m>1. Expression of f (2)
appeared in [1], B

f(z) = 1 (—71-21n(1—z)—1n3(1—z)—|—;IHQ(I—z)lnz—|—3Li3(1—z)—|—Lig(z)—3((3)).

1-=2 2
(2)
The function f (z) is the analytic continuation of Y o-_, H3, 2™, |z| < 1to C/[1, 00).
The second term in (1)) can be obtained by integration term by term of Y ~_, H3 2™, |z| <

1,
117?7)7. m o H3 tm ldt 1.
E - 7/0 E -z, |z| <

m=2

G(2) = (F( (/f it — ) (z)—/ozfit)dt. 3)

The function G (z) is the analytic continuation of F'(z) to C/[1,00).

Let

3
Thus G (1) = f (fl)ff(;l @dt is finite real number, and it is equal to Y50, 3207 | (~1)F*" i’:;f
Relation can be found in [2], (6.10) page 155,

2 1 1
Lis (1 — 2) = —Lis (“’”1) —Liz ()+Lis (1)+% In (1 - @)= 0 (1 = 2) lna4< In® (1 — ).
p—

Using , f(z)in is simplified as follows: W
HOEE i - (—; In® (1 — z) — 3Lis (zi1> — 9L, (z)) .
f(=1)= % (-é In®2 — 3Lis (;) — 2Lis (-1)) ) (5)
These special values are known,
Lis (;) = i (4In®2 +21¢ (3) — 27°In2), (6)

Liz (—1) = —%g@). (7)
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f(=1)= % (—;hﬁz — % (4In®2 +21¢ (3) — 27 In2) — 2 (—i((3)>) (8)

%1113 2. (9)

1 —
:/ I u)du (10)
0 u
—/1 ! 10 (1 4 ) — 3L oLi d
= o (1+u)u 2 n u 13 13 u
1.3
:_1/ In (1+u)du_3/ Liz (u /
2/ 14+u)u 0
19,3 193 193
/ In (1+u)du / In (1+u)du_/ In (1+u)du
o 1+u)u 0 u o l+u
Lo oy Lyay g (L) 2 _ L
<157T —|—4 In”2 4ln 2 —6Liy (2> 4((3)1n2> 4111 2.
/2 LIS (u)du — L14 <1> .
0 U 2

11s ¢ 1y: (. T1: (_ 4
/Mdu:/ Mduf/ Lig(w), _ T 4 L,,C()lnz
0o (I+u)u 0 u o l4+u 720 288

19

1, 9

r

Ly 1 o0, Lo, 9
/ =T 5" In 2+4ln 2+8C(3)1n2.

= H} 1 1 9 9
okt Hegn L i3 9 9
E E (-1) 14" +87T (1+In2)In2 1 (In®2) (In2 + 2) 8((3) In2 16((3).

References:
[1] Istvan Mezo, ” Nonlinear Euler Sums”, The Pacific Journal of Mathematics,
Vol.272, No. 1, 2014.

[2] Leonard Lewin, ”"Polylogarithms and Associated Function”, North Holland,
1981.

Also solved by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy and the proposer.

151. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove that

(+260th7r>zk1+k2 Zk 1+k2

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. First recall that for x ¢ iZ we have

7 coth(mz) ,_~_Z 2+k2
T
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So, taking x = 1 and rearranging we get

1 7 =1
Z 4+ Zcothm = [ 1
2+2cot T ZlJer (1)
k=0
Now, define
> 1 > 1
— k(1+ k%) kzzl k(1 + k2)2
D= E: E: 1 C= (14T cothr)a
—n 1+ k2 S \2 2

Using (1) we see that

and because, clearly we have

1 1
2 TR 2, AT AT

we see immediately that

1

C=a+ Y pre
L KRR+ )
1 1 1
:A+ZQ‘2(+‘>
2k,j21(1+k)(1+‘7) ko j
k+7 k+j
—A+f -
(Z kj(1+k2)(1 + 52) ;;kk‘j 1+ k2) 1—|—]2))
That is
k+3j
C=A+B+ Y > — (2)
(552 kI R2) (L 52)
E
Now, note that for k > j we have
k+j k* —j°

ki(L+ k)1 +52)  ki(k —5)(1+k2)(1 +52)
B4+ =GP+
 kj(k = 7)1+ R (1 +52)
1 1
kj(k —)(1+35%)  kj(k—5)(1+k?)

B 1 < 1 1) 1 ( 1 +1)
R+ \k—J Kk E(1+Kk2)\k—j
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Thus

E‘i 1 i": ( 1 1) i 1 ""1( 1 +1>
=2 a2 = k) T Raie —t=
jlj(l—i-j)k:j+1 k—j k k:2k(1+k)j:1 k—j

o0

:i Hp 2H
Z PO+ SR+

where H,, = >";'_, 1/k is the nth harmonic number. Noting that Hy,_1 = Hy —1/k
we conclude that

> 1 > H,,
E = 2 _— —_—
; E3(1 + k2) ; k2(1 + k2)

But
1 _ 1 1
E2(14+k2) k2 1+4+k2
So
=1 - 1 ~ Hy <=~ Hy
E=2 — =2 — —
D ) Dk N gt
k=1 k=1 k=1 k=1
That is
1 = Hy
k=1 k=1
where we used the straightforward fact that
= H 1 1l 1
D irET X e iTm P
k=1 1+k 1<n<k n(1+k ) n:lnk=n1+k
Replacing the expression for E in (2) we get
= 1 Hy
k=1 k=1

The final step is to note that

to conclude that

D=C+A—B~= (§+72rcoth7r>A—B

which is the desired conclusion.
The only remaining step is to prove the well-known result (4). This can be done as
follows: First, note that

-5 (i) St

n=1
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Hence

and (4) follows immediately. This concludes the solution of the problem

Solution 2 by Moti Levy, Rehovot, Israel.
By changing order of summation,

il 1 =1 1 < H
I P DS D B ED B e

n=1

One can recognize that

o0

1
§Jrzcoth7r:2+z
k=1

2 2 14 k2’

so the original problem can be restated as follows: Show that,
oo oo oo oo
Hy, 1 1 1
> = 2+Z> <Z>—22 (11)
k=1 1+ k2 ( k=1 1+ k2 k=1 k(1+42) = k(1 +k?)

The left hand side of is a reminiscent of Euler’s sum, which can be evaluated
using complex summation method. See the classical article by Flajolet and Salvy

1.

2Zr(k) Ho+ > r (k) + Z Residue |r (s) ('y+w(—s))2,c} =0
k=1 k=1 ce{0}U{poles of r(s)}

(12)
where 7 (s) is rational function satisfying the two conditions: 1) 7 (s) is O (s72) at
infinity, 2) r (s) has no pole in Z\ {0}.

The function 1 (s) is the Digamma function which satisfies,

1 /1 1
_s) = = i . 13
v =03 (5 ) (13)
Our rational function r (s) = 1-&-%’ clearly meets the two conditions, and
(oo} o0 k
k) =2 ———s. (14)
Pt i1 (L K2)

The residues are:
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Residue {7‘ (s) (v + 1 (—s))? 70}

Residue [r (s) (Y41 (—s))? ,z}

0,

1. 2
L+,

Residue [+ (3) (0 -+ (=9))*, 1] = 5 (v +0 )" (15)
We substitute and in and get,
DI i  GRLCUR ARSI »
- k=1 m 4 (v+v @)+ (v +¢ (=)« (v +v @) — (v + ¢ (=9)).

Now we use equation to express the residues by infinite series,

- % (v +2 @)+ (v +¢ (=) + (v + ¢ (1) = (v + 9 (=9)))

i1 /1 1 1 /1 1
__4(z’+§_:1(k_—i+k>+_i+l;<k_i+k)>*
1
1

i [ & 1 p 1 c- ! 1
= — = 2 PRGN 7_2. 1412 = k(1 +k2) 1 1+ k2 '
4( Zk(u—k?)) (Z ’ZHW) (Z’f(”k?))( +Zl+k2>
k=1 k=1 k=t = (17)
Since (sz_l)Q = k(l}rkz) - k(l_:kz)za we can rewrite ,
00 Hk oo -
;1+k2_; 1+k2 (Zk1+k2><+zl+k2> Zlkaz
) (Br) St
2 )\ &R0 ) T A

Reference:
[1] Philippe Flajolet and Bruno Salvy, ” Euler Sums and Contour Integral Repre-
sentations”, Experimental Mathematics, Vol. 7 (1998), No. 1.

Also solved by the proposer.
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MATHCONTEST SECTION

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals

105. Let f : [0;+00) — R be a continuous function such that lim f(z) = L

T—+00
exists (it may be finite or infinite). Prove that

1
lim [ f(nz)dx = L.

n—oo

0

106. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b). Suppose
that f has infinitely many zeros, but there is no « € (a,b) with f(z) = f'(z) = 0.
(a) Prove that f(a)f(b) = 0. (b) Give an example of such a function on [0, 1].

107. Let A be a n x n complex matrix whose eigenvalues have absolute value at

most 1. Prove that

7 n —
4 < A,

n
(Here ||B|| = sup ||Bz|| for every n x n matrix B and ||| =,/ >_ |x;|? for every
el <1 \ =

complex vector z € C™.)
108. Let k and n be positive integers with n > k2 — 3k + 4, and let
f(2)=2""1 4 cp 02" 24+ 4
be a polynomial with complex coefficients such that
CoCp—92 = C1Cp_3 = +++ = Cp_2cg =0
Prove that f(z) and 2™ — 1 have at most n — k common roots.
109. Let n be a positive integer, and let p(z) be a polynomial of degree n with

integer coefficients. Prove that

1
2%, )l 2 5
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Solutions

100. Let (a,),cny be a sequence of real numbers such that lim n(a, —1) =1 €
n—oo
n

(—00,00) and let p > 1 be a natural number. Calculate lim ] (an + ﬁ) )

n—oo k=1

(Jozsef Wildt IMC 2016)

Solution 1 by Michel Bataille, Rouen, France. We show that the required
limit is e if p =1, e*2 if p = 2 and oo if p > 3.

From the hypothesis, we have a, = 1+ % + o(1/n) as n — oo, hence, in the
calculations that follow, we may suppose that n is large enough to ensure that

a, > 0.Let
k=1 < v k:n) k 1 kl/p

where b, = ﬁ Note that b, ~ nl—l/p as n — oo (since lim a, =1).

n—oo

) so that In(P,) = nln(a,) + oy.

n
We set 0, = 3 In (1 + Iﬁ’;p
k=1

Since
nln(a,) =nln (1 + g + 0(1/n)> =n (i + 0(1/n)> =/{+o(1)

as n — oo, we see that lim nln(a,) = ¢. To study o, we first recall some well-

n—oo

n
known results: = — %2 <In(1+z) < z for positive z, kzl 1~ In(n) and, if & < 1,
n —x
> n% ’ia as n — 0o. From the first of these results, we readily obtain
k=1

b2

n n
with u, = 1&% and v, = Y, ICQ% We now distinguish the cases p = 1,p = 2
k=1 k=1

and p > 3. If p =1, then b, ~ %, U, ~ In(n) and lim v, = %2 so that
lim b,u, = lim b2v, = 0 and from (1), lim o, = 0. Thus, lim In(P,) = ¢
and lim P, = ef. If p = 2, then b, ~ ﬁ, U, ~ 2y/n and v, ~ In(n) as
n — oo. It follows that lim b,u, = 2 and lim b2v, = 0. With the help of (1),
we deduce that lim o, = 2 and then that lim P, = e‘*2. Lastly, if p > 3, then
un ~ P ', Up o~ p%-nlf% and

1 byvy, < o <1

Uy, bpty
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1
. P 1—2 —1 1_1 —1 _ .
with Yatn ~ 2P 2opl=y pdpp—t — P2l =2/P, Thus, lim %% =0 and
2up 2 p—2 P 2(p—2) ? oo 2Un
. . 1—2
therefore o,, ~ byu, asn — co. Asaresult, lim o, = oo (since byu,, ~ -L--n' "7
" nSoo p—1

and p > 2) and lim P, = oo follows.

Solution 2 by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy. Let L(p) be the limit we are searching. Clearly

l 1
an=1—|—ﬁ+0 ﬁ

</"1 Y dottn (an+ —
_1nan xnxnan%
—_——

—0

Since a,, — 1, the last term tends to zero. So the result is

" 1
L= li 1 —
e P {/1 ! (an i f/ﬁ) dx}

Moreover
.
"1 de = L 1 dy =
1 ! an+€/j m\/_ n n_T2 p+1 n(an+y) Y=
=iy
R
_ y PIn(an, +y) ”_2/“+1/” Cody
B n S T )
-1
_ n*In(a, +n72) nin(ay, +n71) +l /" g dy
N n n n S5 yP(an +y)
—_——
—0
Let p > 2.
_2 —2 l 1
In(a, +n7?)=14+n"7 +—+o| —
n n
whence

2] 2 _ 1
nin(an ) )ann(1+nv2+0(>)an_Zﬁ+oo
n n

Since
1 /mr d
—/,2 — YW .y
nJno yP(an +y)

" 1
1 nt—1,d = L=
/1 n(a,JrW) xr — 400 —+00

it follows
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Let p = 2.
2In(a, +n7 l+1 1
n?In(a, +n )N 1 (1++ 0<)>N1+1+0(1)
n n
Moreover
1/"2 dy 1 (1 an+y 12
n Jp-1 92(an+y) n CL% Yy any In—t B
1 an +n-1? 1 an + L \/ﬁ+ n 1
T na? n—1/2 na2 1 na, nNap
It follows
" 1
In(a,+—|de —1+2 = L=¢"?
/ “(“ *m) o ‘
Let p=1.

- ! 1
ln(an+np2):1+—|—0(>
n n

1 /” dy 1 /"‘1 dy 11 y
-, —L == — Y
nJne yp(an + y) n Jp-2 y(an + y) nan an +y

" 1
/1n<an+>dxﬂl+1:>Lel
1 rn

101. Let f,g: [a,b] — R be two nonnegative continuous functions. Assume that f
attains its maximum at a unique point on [a,b] and ¢ attains its maximum at the
same point as f and possibly at other points.
b
[T @)g(@)de
1) Prove that lim =———— = | £]__ gl

et [ fr(a)da

n
— 0
n—2

SO

2) Does the result hold under no assumption on f and g?
(Jozsef Wildt IMC 2016)

Solution by Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italiy. Let p be the unique point such that f(p) = ||f]|eo. We
have also g(p) = ||9]]co-

fn+19: " f-g< anfHOOHQHOO

so we get

b n b n
J S ate) L 7@DI_ gl
b b - o0 o0
fa f(z)dz fa fr(z)dz
We know by the continuity of f, the uniqueness of p and the compactness of [a, b]
that for any e small enough there exist 0. such that (I = [p — é.,p + d.])

vel = [f(@)2|[fllo —¢ 9(z) 2 llgllc —€
(this follows by the continuity alone) and
z € [a, b\ = f(x) <|[fllc —€

dx
< flloollglloo
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(here the uniqueness of p and compactness of [a,b] are used). Indeed let’s sup-
pose the above false. This means that: for any e, for any Is = (p — §,p + 9),

r[nab]x\l f(x) > ||fllc —€ . Let’s take ey — 0 and Is fixed independent of
zE|a, 5

ei. This would imply the existence of a sequence {zy} € la,b]\Is, such that
flxzk) — |Ifl]. From {zx}, via the compactness of [a,b], we can extract a subse-
quence {zy,} — p’ € [a,b]\Is. The continuity of f yields f(p’) = ||f]| which is a
contradiction with the uniqueness of p.

Jo I M @)g(@)de [ S @) g(@)de
b oy - e Frdz) T
Jo fr@de g fn<w>dx( if[ﬂ}ndz )
fm-dx

= (1fllos = 2)(1lglloo =€) J o =

Jo s (14 Lo )

1
= ([Iflloc = €)(llglloc — €)
fu,,b ; frdz
(1 + [ fl]}"da; >
Now we show that
. f[a,b]\f frde
A e

Indeed also by the continuity of f we know that there exists an interval I’ C I such
that f > ||f]lcc —€/2 and then

Japs " dx<fab\1f d$<(b—a—|I|)~(||f|\oo—5)”
Jofrde = [ frde T T (Sl —e/2)"

We have proven that for any € > 0 we have

2 (@) g(a)de
f; fr(x)dx

(I fllee = &)([lglloc — &) < < |[fllscllglloo

that is the result.

b) If f and ¢ attains their maximum at different points, the result needs not to be
true. Let f(z) =e ™, g(z) =

1 —(n+l)z 1 1 1
/ e (niDa g € + / e~z g0
0 —(n+1)lo n+1J,
_ 6_(n+1) + 1 (1_e—n—1)
—(n+1)  (n+1)2
SO
1 —n—1/_—1 —1
] f e (n+1)acxdl. . n+1 zt+e (n+1 - W) —x
lim #0o = fim Dt I g e oo = 1
o e Ti—em)
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102. Let f € C3(R", R) with f(0) = f’(0) = 0. Prove that there exist h €
C3(R™, S, (R)), such that f (z) = z*h (z) z, when S,, (R), is the set of symmetric
matrix, and ! is the transpose of .

(Jozsef Wildt IMC 2016)

Solution by Moubinool Omarjee, Paris, France. We have f (z) = z'h (z)

where h(x fo (1 —w)H (uz)du with H(v) = (%g;j(v)) the Hessian of f, h is

of class C’ L with theorems of derivative under integral sign.

103. Find the nature of the series M
n>1

increasing order, and ¢ imaginary complex number.

when (py,),,~, is the prime number

(Jozsef Wildt IMC 2016)

Solution We didnt receive any solution. The solutions for this problem can also
be sent during this issue.

104. Let a,b, and ¢ be positive real numbers. Prove that

(o) () s () =

for any positive integer n > 1.

(Jozsef Wildt IMC 2016)
Solution 1 by Arkady Alt, San Jose, California, USA.

(z+y+2)°
Since x2+y2+222ffor any real z,y, z we obtain
2
(6n+1)a—b\> _ 1 (6n + 1)a — b

Z( n(b+c) Zg 2 n(b+c)

cyc cyc

. (bn+1)a—b a 1l ~a-— )
S — =6 — d by Cauchy I lit
mceczy:C "0+ §b+c+n§6b+can vy Cauchy Inequality

a 1 1 9 3
— = b = b — 3>--3=—
A (a+ +C)zy: b+ c 2(2( +o) Cycb+c> 2 2

(bn+1)a—b 3 la-b_ 1l ~a-b

th —_— -+ — = — .

enczyc nb+c) ~— 2 nzy: b+c +ncZ:be—i—c

1
Noting that triples (a, b, ¢) and (b+c c+a a+b) agreed in order
(( b)( ! L ) (a— > 0) by R t I lit
a— = earrangement Inequality we
b+c c+a b+ )( a) ~ Y 8 auetty
have ) © 0 b
a— n+1l)a—
d, theref —— >0.H A~ >9and

C%:CIH_C czy:cb+ and, ereore,g:cb_'_c_ encec%; nhto = an

we finally obtain
2
(6n+1)a—b\> _ 1 (6n+1)a—b 1
orrljezo) 5 2 (o8 )eT0) S 2 gy — 97,
C%%( n(b+c) -3 g% n(b+c) -3 8 7

Solution 2 by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy. From a?+ b? + c® > (a+ b+ ¢)?/3 which holds true
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regardless the sign of a, b, ¢, we get

(6n+1)a—b\> _ 1 (6n+1)a —b ’
;( n(b+ c) >Z3<Cyzc n(b+c) )

S0 we come to prove

2
a 1 a—>b
6 — > 81

a 3 . .
Now E —— > — is the famous Nesbitt’s inequality so it suffices to show that
= b+c ™ 2

Za—b>0:>a+b+c>b+c+a (1)
Cycb—f—c_ b+c¢c c¢c+a a+b " b+c c+a a+b
Let’s suppose a > b > c. It follows that
1 1 1
> >
b+c " a+c  a+bd

1 1 1
The Rearrangement—inequality yields (1) being (a, b, ¢) and (b iyt bt by b)

equally sorted.
t Let a > ¢ > b. It follows that
1 1 1
> >
b+c " a+b " a+c

1 1 1
Again the Rearrangement—inequality yields (1) being (a, ¢,b) and (b PR ey c)

equally sorted.
So we have got

a 1 a—>
<62b+c+n;b+c

cyc

2 2
a 9
>16 —— 4+0] >36- =281
and this completes the proof.

Also solved by Henry Ricardo, Westchester Area Math Circle, Purchase,
NY, USA and Michel Bataille, Rouen, France and Nicusor Zlota, Traian
Vuia Technical College, Focsani, Romania.
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MATHNOTES SECTION

A note on Mitrinovi¢ - Adamovié¢ and Lazarevi¢ inequalities

EDWARD NEUMAN

Abstract. Generalizations and refinements of Mitrinovi¢ - Adamovié¢ inequality
for trigonometric functions and 1. Lazarevi¢ inequality for hyperbolic functions are
established. The main result is obtained using the Schwab-Borchardt mean.
Keywords: Mitrinovi¢ - Adamovié¢ and Lazarevié¢ inequalities, trigonometric and
hyperbolic functions, Schwab-Borchardt mean, classical bivariate means.

1. INTRODUCTION

In recent years the following inequalities
(cosz)/? < e (0 < |z| < 7/2) (18)
x

and h
sinh x
1/3 o S

(coshz) (x #0) (19)

have attracted attention of several researchers. Inequality (18) is due to D.S.
Mitrinovié¢ and A.A. Adamovié¢ while the inequality (19) has been discovered by
I. Lazarevié. For details see [, p. 238]. Several refinements of the inequalities
(18) and (19) appear in mathematical literature (see, e.g., [0]). Generalizations of
Mitrinovi¢ - Adamovié¢ and Lazarevié¢ inequalities to the two-parameter generalized
trigonometric, hyperbolic and Jacobian elliptic functions have been obtained re-
cently. For details the interested reader is referred to [7] and the references therein.
In this note we shall prove a chain of inequalities which in particular cases will
provide refinements of inequalities (18) and (19). In Section 2 we provide definitions
and notation. A main result of this note is established in Section 3.

2. DEFINITIONS

Let a and b be positive numbers. The Schwab - Borchardt mean of a and b, denoted
by SB(a,b) = SB, is defined as follows

(bQ _ a2)1/2 ]
“cos1(ab) if a<b,
SB(a,b) = { (> =012 <a (20)
cosh™ (a/b) '
a if a=0

(see, e.g., [11, [3]). It is easy to prove that SB is a nonsymmetric and homogeneous
mean of degree 1 in variables a and b. This mean has been studied recently in [5],
[9], and [10].

For the later use we record two results involving the Schwab-Borchardt mean. The
first one is the invariance property (see [I], [3])

SB(a,b) = SB(A,VAb), (21)
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where
A=12 ;r b (22)
is the arithmetic mean of a and b. The following bounds for SB
2b
(ab*)V/? < SB(a,b) < 2% (23)

have been established in [9].

In what follows we will assume that the numbers a and b are positive and un-
equal. As usual, the symbols I, L and G will stand, respectively, for the identric,
logarithmic and geometric means of a and b:

1
a\ aTs —b
T=—e (L L=—"""__ G=vab 24
¢ (bb> ’ loga—logb’G “ (24)

(see [2]). A classical results states that all four means listed in (22) and (24) are
comparable, symmetric and homogeneous of degree 1 in their variables. Moreover,

the chain of inequalities
o (A+G ?
2

< A+G - 2A+G
2 3
is satisfied for all numbers a and b. For more details see [8], [11], 12| 13} [14]

1/3

G < (AG2)YS < <L< %(A +2G)

(25)

<I<A

3. MAIN RESULT

We will need the following:
Proposition 3.1. Let a > 0 be such that a # 1. Further, let

1
ot and  pu=+a.

2
a—1 2/3 1 2/3
< (lna ) <:[3(A42uﬂ

A\ 2/3 1 2/3 .
< <;H) < [3(2/\+u)} < (e7tam1)23 < X2/3 < §B(a,1).

)\:

Then the following inequalities:

2/3
)\ 2
2 < (pa)l? < [u <+u)

2

(26)

hold true.

Proof. In order to establish the desired result we use (21) with b = 1 followed by
application of the left inequality in (23) to obtain

SB(a,1) = SB ()\, \5) > A2/,
This completes proof of the last inequality in (26). The remaining ones follow from
the chain of inequalities (25) where now
a—1 a

A= G =pu, L= and I= (e taaT).

Ina

The desired result now follows. O



588

The main result of this note reads as follows:
Theorem 3.2. Let 0 < |z| < m/2. Then the following inequalities

T
13 T 2/9 cos? 3 + 4/cosx
(cos :v) < (cos 3 Ccos x) < [vcosx - 5

cosz — 1\*/* 1 9T 2/3
A < 7<cos —+2 cosx)
In(cos x) 3 2
(27)
z 2/3 2/3
cos? = +4/cosT
< 2# < {(2 cos? = 4 y/cos a:)
cosa 4/3 i
< (efl(cosm)cow—l)w3 < (cos2 E) e
x
Proof. To obtain (27) we let in (20) a = cosx to obtain
SB(cosz,1) = e
x
and next utilize the chain of inequalities (26) with a as defined above and
A = cos? % and 1= /CoST.
We omit further details. O

In a similar fashion one can obtain a refinement of Lazarevié¢ inequality (19) by
letting in (26) a = coshz,  # 0. Using (20) we obtain easily

inh
SB(coshx,1) = ST
x

Next we apply Proposition 3.1 to obtain the desired result.
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JUNIOR PROBLEMS

Solutions to the problems stated in this issue should arrive before October 15, 2017.

Proposals

66. Proposed by Nguyen Viet Hung, Hanot University of Science, Vietnam.

Let x,y, z be real numbers in the interval [%, 2]. Find the minimum and maximum
possible value of

x Y z

x,y,2) = .
f@.y.2) yz—|—1+zx—|—1+$y+1

67. Proposed by Daniel Sitaru, Mathematics Department, Colegiul National Eco-
nomic Theodor Costescu, Drobeta Turnu - Severin, Mehedinti, Romania.

Let n € N such that n > 2. Prove that in any triangle ABC' the following relation-
ship holds:

6+ v/ va) <3

Vbt yfe—2ya)
Z(Ft) i

Vo + /e

68. Proposed by Michael Rozenberg, Tel Aviv, Israel and Leonard Giugiuc, National
College Traian, Drobeta Turnu Severin, Romania. Let a,b, c and d be non negative
real numbers, none three of which 0 such that a 4+ b+ ¢ + d = 4. Prove that

a’ +b? + ¢ + d? L 12abed 51
ab+bc+cd+da+ac+bd  (ab+bc+ cd+da+ac+bd)2 —

When equality occurs?

69. Proposed by Mohammed Aassila, Strasbourg, France.
Let N be a positive fixed integer. How many integers 1 < n < N are such that:

11x2"'=4n+6 (mod 13)?

70. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Let suppose that in a board are written numbers in a line
like this

1

[ NI
W=
3=

n—1

Now we add first number with seconnd and write down to middle of the numbers ,
same thing we add the k& — th number with (k + 1) — th number and write down to
middle of the numbers and we create a new line with n — 1 new numbers and we
do the same thing with new line and repeated the same proces until we left with
only one number. Find the last number it is written on the board. For example if
n = 3 then



591

lw
W~ D=

(o [43}
W=

Solutions

61. Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam. Given
a tetrahedron A; AsA3A4 with the volume V, let I and r be incenter and inradius,
respectively. Denote by S; the area of triangle opposite to vertex A;(i = 1;2;3;4).
Prove that

4

21"51528334 .

ZSZIAZQ = T Z AiAj smL(Ai,Aj),
n=1 1<i<j<4

where Z(A;, A;) is the dihedral angle at edge A;A;.

Solution by Michel Bataille, Rouen, France. Let S = 57 + S5 + S3 + 54 and

1 2
K=5 D 58 A4l
1<i<j<4
We show that K equals either side of the desired equality. First, consider the

orthogonal projections A} and A of A; onto the opposite face (A3 A3A4) and onto
the edge AsAj, respectively. Then /(As, A3) = LA A A} and so

. CAAL BV/S) BV AgAs
S22, As) = oy = 98,7 A; T 2 S8

This result immediately generalizes to any sin Z(A;, A;) and we deduce that the
right-hand side R of the required equality is

27”51525354 3V S’LS] 2 r 2
— P1mersgd 27 A A = — S A A = 1
* vz 2 S5ss A=y 2 SSAdT=K ()

1<i< <4 1<i< <4

where the last equality follows from V = %rSl + %TSQ + %7"53 + %7’54 = %

Second, the barycentric coordinates of I relatively to (Aj, Aa, A3, Ag), which are
proportional to the volumes of the tetrahedrons T As A3 Ay, [A1A3Ay, TA1 A5 Ay, TA1 A As,
are also proportional to Si, S5, S3, 54, hence

ST = S1A1+ SoAs + S3A3+ S4A,

and therefore we have for example:

SA—lj = S2A1Ay + S3A41 A3 + S4 A1 Ay
The dot product (SA—lll) : (S/TI)) gives S21A? as
S3.A) A3 4S5 Ay AS4ST A1 AT 42558341 Ag- Ay A3 42558, A1 Ag- Ay Ay+28354 A1 Az- Ay Ay,
that is,
S2TA? = (So4-S3+S54)(Se Ay A3 4S5 A1 AZ4+S4 Ay A2)—(S253 Ag A3+528, Ag A3 45358, A3 A%)
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. - - . . .
using 241 Ay - A1 Az = A1 A% + A1 A% — A3 AZ and similar relations for the other dot
products. Since Ss + S3 + S5 = S — 51, we can rewrite the previous result as
S1

SlfA% = ? (SgAlAg + SgAlAg + S4A1A421 — ]C) .

Writing Sol A%, S31 A2 and S4I A% in a similar way and adding the four equalities,
we get

4
D SiIA}=2K-K =K. (2)
i=1

The desired equality follows from (1) and (2).

Also solved by the proposer.

62. Proposed by Daniel Sitaru, Mathematics Department, Colegiul National Eco-
nomic Theodor Costescu, Drobeta Turnu - Severin, Mehedinti, Romania. Let be
A A" € (BC);B',B" € (AC);C'",C" € (AB) in AABC such that AA'N BB’ N
CC"# 0 and AA” N BB" N CC"” # (). Prove that

27[A'B'C" BA  CB  AC'\’

[A//BIICI/] S BA// + CB// + AC’// !
where [ABC] is area of triangle ABC.

Solution 1 by Ioan Viorel Codreanu, Satulung, Maramures, Romania.

Let ﬁ,Ac: = 557% = y,% = z and % = x’,% = y’,% = 2'. Then
AB' = 1S and AC' = 247, We get
/ . / . 1
[B’AC”]:AB AC smA: z ([ABC],
2 (z+1)+1)
and the similar relations [C,BA/] = mvw . [ABO] ; [B/CA/] = m .
[ABC]. We have
! ! li li €
and using the Ceva Theorem [[z =1, we get
2[AB
[A/Blc/] — [ C] .
[T(x+1)
Analogously, we prove that
[A//B/IC//] — 2 [ABC]
[ +1)

and then
[A'B'C’l T2 +1)
[A”B”C”] - H (l‘ + 1) :

’ . ’ ’ 1 .
We have BA' = fo,BA” = Z,’ff it results that gT’f‘,, = % and the sim-

ilar relations. Using the Ceva Theorem [[z = 1,[[2’ = 1 and the AM-GM
Inequality, we get

BA'\® BA’ a(@+1)  __[[@+1) 27[A'B'C")
=\ > - _ — — .
( BA”> 22 [[ gz =211 5 Gt @+l - [ABCT
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Solution 2 by Neculai Stanciu, ”George Emil Palade” School, Buzau,

’
Romania and Titu Zvonaru, Comanesti, Romania. We denote: 2’ = %AC,

cB' AC’ " BA” 1 cB"” _n _ AC”

V=%17=om v =%V =517 =5
By Routh’ theorem we have
o, o7 1 "y 11 1 1
[A'B'CY) = rYz + [ABC],[A"B"C"] = Ty z + [ABC]

@+ Dy + D +1) @+ D)y + V(" + 1)
1,0 ", 11

Because we have z'y’2" = 2''y"” 2" = 1, the inequality to prove becomes
27+ D@ DE D) _ (P ) @) XD
AN TDE )\ e e

which yields immediately by AM-GM inequality.

Solution 3 by Michel Bataille, Rouen, France. Let P (resp. @) be the point of
concurrency of the cevians AA’, BB',CC" (resp. AA”, BB"”,CC"). In barycentric
coordinates relatively to (A4, B,C), we have P = (x1 : 2 : x3) and Q = (y1 : Y2 : ¥3)
where z1, 2, 3, Y1, Y2, Y3 are positive real numbers and x1+x2+x3 = Y1 +y2+y3 =
1. With these notations, the coordinates of A’, B’,C’ are

A'=0:z9:23), B' =(x1:0:23), C'=(x1:22:0) (1)

and therefore % = || where

0 551:);1933 wlilxz

— Z2 T3
6= To+T3 0 T1+T2 | ”
X3 X3
T2+T3 r1+T3

We readily obtain [?;gg]l] = 221224 ; a similar result holds for %

T (z1tz2)(2txs)(z1tas3)’
and it follows that the left-hand side of the inequality is £ with

o 27z w223 (y1 + y2) (Y2 + y3)(y1 + y3)
Y12y (w1 + x2) (w2 + w3) (21 + 23)

—
From (1), we have (z2 + x3)A’ = 22 B 4+ 23C, hence (22 + x3)BA’ = ach.C)' and so

BA' = izfg Similarly, BA” = g;fyf so that 24 = % In the same way,
we arrive at

CB’ _ x1(y1 + y3) AC’ _ x2(y1 + y2)

CB"  yi(z1 +x3)’ AC"  ya(1 + 22)

and the right-hand side R writes as
_ <$3(y2 +y3) n r1(y1 +y3) | @2y + y2)>3
ys(zo +23)  yi(wr +x3)  yolrr +22))

The desired inequality R > £ now results from (a;+as+as)® > 27ajaza3 (AM-GM)
applied to

_z3(y2 +y3) w1y +y3) _ mo(y1 + yo)
) = ————, g = ————, G3 = — .
y3(x2 + x3) yi(x1 + x3) ya(x1 + x2)

Also solved by the proposer.

63. Proposed by Leonard Giugiuc, National College Traian, Drobeta Turnu Sev-
erin, Romania. Let a,b,c € R. Prove that

9v'2(ab(a — b) + be(b — ¢) + ca(c — a)) < V3 ((a=b)*+(b—0c)?+(c—a)?)

Njw
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Solution 1 by Michel Bataille, Rouen, France. The inequality is obvious if
ab(a — b) + be(b — ¢) + ca(c — a) < 0 and otherwise is equivalent to

54 ((a = b)(b—c)(a=¢)* < ((a =)+ (b— )+ (c—a)’) (1)
(since ab(a — b) + be(b — ¢) + ca(c —a) = (a —b)(b — ¢)(a — ¢)). Let L(a,b,c) =
54 ((a — b)(b— ¢)(a — ¢))* and R(a, b, ¢) = ((a=0*+(b—c)?+(c— a)2)3 dfap =
a—c, by=b—cand c; =0,thena; —by =a—0b, by—c1=b—c, a1 —cp=a—c
so that L(a1,b1,¢1) = L(a,b,c) and R(a1,b1,¢1) = R(a,b,c). It follows that it
suffices to prove (1) in the case when ¢ = 0, that is, to show that 54(a — b)2a?b? <
((a—b)*+b*+ a2)3 or equivalently,

27a2b%(a — b)? < 4(a® + b* — ab)®. (2)

3

Now, it is straightforward to check the identity
4(a® + b% — ab)® — 27a*b*(a — b)* = (a — 2b)*(2a — b)*(a + b)?
so that (2) writes as (@ — 2b)%(2a — b)?(a + b)? > 0 and clearly holds.

Solution 2 by Arkady Alt, San Jose, California, USA. Due to cyclic sym-
metry of inequality we may assume that ¢ = max{a,b,c}. Since the inequality is
obviously holds if b < ¢ (because then

ab(a—b)+bc(b—c)+ca(c—a) = (a—b) (a —¢) (b—¢) < 0) suffice to consider only
case when b > ¢, thatisa>b>c. Letz =b—c,y=a—b,p=2x+y,q = xy. Then
z,y>0,a=c+ax+yb=c+uz,

ab(a —b) +be(b—c) +calc—a) = (z+y)zy =pg, (a—b)?>+ (b—c)* + (c—a)? =
(m2 +y? 4+ (z+ y)2) =2 (x2 +1% + J:y) =2 (p2 — q) and in the new notation the

inequality is
2

9v2pg <3 (2 (p2 — q))3/2 ,whereq > 0 and ¢ < pz(condition of solvability

ngy:: P in veal z,y). We have V3 (2 (p2 - q))3/2—9\/§pq >

2\ \ 3/2 2 21 3/2 3 3 3
p P 3p 9 9 9
3(2(p?—-= —9V2-— =3 — — = — =0
f( (p 4)) Ve f(?) 22 2V 22
Also solved by Kevin Soto Palacios, Huarmey,Peru; Ravi Prakash, New
Delhi, India; Nicusor Zlota, Traian Vuia Technical College, Focsani, Ro-

mania and the proposer.

64. Problem proposed by Arkady Alt, San Jose, California, USA. Let A (x,y, z) :=
2(xy + yz + x2) — (2% + y? + 22) and let a,b, ¢ be sidelengths of a triangle with
area F. Prove that

of Vieta’s System {

64F3
7
Solution by Michel Bataille, Rouen, France. In the featured solution of

problem 1973 in Mathematics Magazine, Vol. 89, No 4, October 2016, p. 297, it is
proved that

A (a37b3,c3) <

Ala,b,c) - Ala®,5°,¢%) < (A(a%, 1%, ) (1)

whenever a, b, ¢ are positive real numbers. Taking for a, b, ¢ the sidelengths of the
triangle, we calculate

Ala,b, ) = 2(abt+betca)—(a? +b*+c?) = 2(s* +r2 +4rR)— (25> —2r* —8rR) = 4r(r+4R) > 0
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where s, r, R are the semi-perimeter, the inradius, the circumradius of the triangle,
respectively, and

A(a?, 0%, ) = 2(a?b? + b2 + 2a?) — (a* + b* + ¢*) = 16F?
(from Heron’s formula). Applying (1), we deduce
64F4
A3 13, 3) <
(0%, 5%, ) < r(r + 4R)
and see that it is sufficient to show that v/3F < r(r + 4R) or, since F' = rs,
V3s <r-+4R.

We are done since the latter is a known inequality, proved in O. Bottema et al.,
Geometric Inequalities, Wolters-Noordhoff Publishing, 1968, 5.5, p. 49.

Also solved by the proposer.

65. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Find all function f : N — N such that mf(n) + f(m) is
divisible by f(m)(f(n)+ 1) for all m,n € N.

Solution by Michel Bataille, Rouen, France. The identity function idy, de-
fined by idy(n) = n for all n € N, is clearly a solution. We show that there are no
other solutions. To this end, we consider an arbitrary solution f and prove that we
must have f(m) = m for all m € N. For each pair (m,n) € N x N, we have

mf(n)+ f(m) = g(m,n)f(m)(f(n) +1) (1)
for some positive integer g(m,n).
Let a = f(1). With (m,n) = (1,1), (1) yields 2a = g(1,1)a(a + 1), hence 2 =
(a+1)g(1,1) and so a + 1 = 2, that is, f(1) = 1. From (1), we then deduce that

(2g(m, 1) — 1) f(m) = m 2)
for any positive integer m. Consider any m > 1; such an integer can be written
as m = 2" - s for a unique pair (r,s) where r is a nonnegative integer and s is a
positive odd integer. Using (2), we obtain (2g(m,1) — 1)f(2"s) = 2"s or, setting
f(2rs)=2"¢ (' > 0,5 odd), (2g(m,1) —1)2"'s' = 2"s. This demands ' = r and
s’ = d, some divisor of s, so that f(m) = f(2"s) = 2"d where s = dd’ for integers
d,d’. Note that in particular f(2") = 2".

Now, equality (1) with m = 2"s and n = 2% (u € N) gives 2“d'+1 = g(m,n)(2*+1).
As a result, the integer 2 + 1 divides 2%d’ + 1 = (2% + 1)d’ + 1 — d’, hence also
divides d’ — 1. Since w is arbitrary, d’ — 1 has infinitely many divisors. The only
possibility is d' =1 and so f(2"s) = 2"s. The desired result f(m) = m follows and
the proof is complete.

Also solved by the proposer.
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