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PROBLEMS AND SOLUTIONS

Proposals and solutions must be legible and should appear on separate sheets, each
indicating the name of the sender. Drawings must be suitable for reproduction.
Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
October 15, 2017

Problems
152. Proposed by Marian Dinca, Bucharest, Romania and Leonard Giugiuc, Na-
tional College Traian, Drobeta Turnu Severin, Rumania. Let a, b, c and d be the
lenghts of the sides of a convex quadrilateral inscribed in a circle with radius R.
Prove the inequality

a2

b+ c+ d− a
+

b2

a+ c+ d− b
+

c2

a+ b+ d− c
+

d2

a+ b+ c− d
≥ 2

√
2R.

153. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let α > 1 and let a, b ∈ R, b 6= 0. Calculate

lim
n→∞

(
1− a

nα − b
n

b
n 1 + a

nα

)n

.

154. Proposed by Anastasios Kotronis, Athens, Greece and Haroun Meghaichi,
student, the University of Science and Technology, Houari Boumediene, Algiers,
Algeria. Let m be a positive integer and

Sn,m =
n∑

k=1

(−1)k

(
n

k

)
k−m.

Show that:
1) Sn,1 = − lnn− γ − 1

2n +O(n−2)(n→ +∞),
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2) Sn,2 = − ln2 n
2 − γ lnn− γ2

2 − π2

12 −
ln n
2n + 1−γ

2n +O
(
n−2 lnn

)
(n→ +∞),

3) There exist real numbers am, . . . , a0 and bm−1, . . . , b0 such that

Sn,m =
m∑

k=0

am−k lnm−k n+
m−1∑
k=0

bm−k−1
lnm−k−1 n

n
+O

(
n−2 lnm−1 n

)
(n→ +∞).

and determine them.
155. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” School, Buzǎu, Romania. Let
a ∈ R∗

+ and let (Ln)n≥0 be Lucas sequence and a positive real sequence such that
limn→∞

an+1
n2an

= a. Find

lim
n→∞

(
n+1

√
an+1Ln+1

(2n+ 1)!!
− n

√
anLn

(2n− 1)!!

)
.

156. Proposed by Dorlir Ahmeti, University of Prishtina, Republic of Kosovo and
Alexander Gunning, Australia. With (2n − 1)3 same cubes we build a cube. We
say any cube which is still in the cube is if at least three faces of that cube are not
shared with any other cube. We begin by removing a cube (by doing this we will
cause other cubes to become and we may repeat this procedure, removing further
cubes. What is the minimum number of moves required to remove the cube which
is in the centre of cube.
157. Proposed by Cornel Ioan Vălean, Timiş, Rumania. Prove that

2
∞∑

n=1

(
ζ(3)ζ(6)−H(3)

n H(6)
n

)
+ 7

∞∑
n=1

H
(2)
n

n6
= 10ζ(3)ζ(5)− 2ζ(3)ζ(6)− 23

12
ζ(8).

where H(m)
n = 1 +

1
2m

+ · · ·+ 1
nm

denotes the nth harmonic number.

158. Proposed by Sava Grozdev, VUZF University of Finance, Business and En-
trepreneurship, Bulgaria, Hiroshi Okumura, Department of Mathematics, Yamato
University, Osaka, Japan and Deko Dekov, Stara Zagora, Bulgaria . Given triangle
ABC with side lengths BC = a,CA = b and AB = c. Prove that the pedal triangle
of the inverse of the orthocenter of triangle ABC in the Circumcircle of triangle
ABC is similar to the orthic triangle of triangle ABC. Find the similitude ratio as
function of a, b, c.
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

145. Proposed by Paolo Perfetti, Department of Mathematics, University Tor Ver-
gata, Rome, Italiy. Let 0 ≤ x ≤ 1. Prove that xx ≤ x2 − x+ 1− x2(1− x)4.
Solution 1 by Moti Levy, Rehovot, Israel.
Let y = 1− x. Then our original inequality is equivalent to

(1− y)1−y ≤ 1− y + y2 − y4 + 2y5 − y6, 0 ≤ y ≤ 1.

By taking the first three terms of the binomial expansion (the inequality is justified
since the absolute values of the terms are decreasing),

(1− y)1−y ≤ 1− (1− y) y +
(1− y) (−y)

2
y2 = 1− y + y2 − 1

2
y3 +

1
2
y4.

Hence, it is enough to show that

−1
2
y3 +

1
2
y4 ≤ 2y5 − y6

which is equivalent to

y2 (2− y) +
1
2

(1− y) ≥ 0, for 0 ≤ y ≤ 1.

Solution 2 by the proposer. This is a refinement of xx ≤ x2 − x + 1 (Crux
Mathematicorum, problem 3815, Vol.39(2)). The inequality is equivalent to x lnx ≤
ln(x2 − x + 1 − x2(1 − x4)) and by using lnx ≤ (x − 1) − 1

2 (x − 1)2 + 1
3 (x − 1)3

which is proved at the end, we come to

f(x) = x

(
(x− 1)− 1

2
(x− 1)2 +

1
3
(x− 1)3

)
− ln(x2 − x+ 1− x2(1− x4)) ≤ 0

f ′(x) =
1
6

(8x7 − 43x6 + 98x5 − 110x4 + 14x3 + 56x2 − 37x+ 5)(x− 1)2

x− 1 + x6 − 4x5 + 6x4 − 4x3

.=
(x− 1)2

6
g(x)
h(x)

Now we prove that h(x) < 0 while g(x) is strictly decreasing passing from positive
values to negative values. It follows that f(x) starts decreasing and then increases.
Since f(0) = f(1) = 0, this proves the statement.
h(x) ≤ 0 is equivalent to

x6 + 6x4 + x ≤ 4x5 + 4x3 + 1, 0 ≤ x ≤ 1

and this is in turn implied by

6x4 ≤ 3x5 + 4x3

which is easy AGM. Indeed

3x5 + 4x3 ≥ 2
√

12x4 = 4
√

3x4 > 6x4
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Moreover

g′(x) = 56x6 − 258x5 + 490x4 − 440x3 + 42x2 + 112x− 37

and we want to show that g′(x) < 0 so that g(x) decreases. Since 56x6− 56x5 ≤ 0,

g′(x) < 0 ⇐= −202x5 + 490x4 − 440x3 + 42x2 + 112x− 37 .= G(x) < 0

The tangent to G(x) at x =
1
2

+
1
40

is

r(x) = − 8781149
12800000

− 213941
256000

x, r(0) < 0, r(1) < 0.

so r(x) < 0 for any 0 ≤ x ≤ 1. Moreover

G(x)− r(x) = − (1616000x3 − 2223200x2 + 740230x+ 1054011)(40x− 21)2

12800000
and

(1616000x3 − 2223200x2 + 740230x+ 1054011) ≥
≥ (2

√
1616000 · 740230− 2223200)x2 + 1054011 > −36000x2 + 1054011 > 0

so
G(x)− r(x) ≤ 0 that is G(x) ≤ r(x) < 0

and this concludes the proof of the inequality. The last step is

lnx ≤ (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3

that is
h(x) = lnx− (x− 1) +

1
2
(x− 1)2 − 1

3
(x− 1)3 ≤ 0.

Since h′(x) = −(x − 1)3/x, h(x) is monotonic increasing and by limx→0+ h(x) =
−∞, h(1) = 0, it follows h(x) ≤ 0 for any 0 ≤ x ≤ 1.
Also solved by Moubinool Omarjee, Paris, France.

146. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let n ≥ 1 be an integer. Solve in M2(Z) the equation X2n+1 −X = I2.
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.
Consider am matrix X ∈M2(Z) satisfying X2n+1 −X = I2. from

I2 = X(X − I2)(X2n−1 + · · ·+X + I2)

we conclude that det(X) and det(X−I2) are integer divisors of 1. But det(X−I2) =
det(X)−tr(X)+1. It follows that there exists ε, ε′ ∈ {−1, 1|} such that det(X) = ε
and tr(X) = 1 + ε− ε′. Thus

(tr(X),det(X)) ∈ {(1, 1), (3, 1), (1,−1), (−1,−1)}
and the possible characteristic polynomials of X are

Characteristic Polynomial roots
(a) λ2 − λ+ 1 eiπ/3 e−iπ/3

(b) λ2 − 3λ+ 1 3−
√

5
2

3+
√

5
2

(c) λ2 − λ− 1 1−
√

5
2

1+
√

5
2

(d) λ2 + λ− 1 − 1+
√

5
2

−1+
√

5
2
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On the other hand, any complex eigenvalue λ of X must satisfy λ2n+1 = 1 + λ and
consequently if |λ| > 1 then |λ|2n+1

< 2 |λ| so |λ| < 21/(2n) ≤
√

2. It follows that
all the eigenvalues of X must belong to the open disk D(0,

√
2). This excludes the

cases (b), (c) and (d) because (3 +
√

5)/2 >
√

2 and (1 +
√

5)/2 >
√

2.
For (a) the eigenvalues of X are {eiπ/3, e−iπ/3}, but if λ is one of these eigenvalues
then

3
2

= <(λ+ 1) = <(λ2n+1) ≤ |λ|2n+1 = 1

which contradicts the fact that λ2n+1 = 1+λ. It follows that the proposed equation
has no solutions in M2(Z).
Solution 2 by by Michel Bataille, Rouen, France.
We show that there are no solutions. To this aim, we assume that for some X ∈
M2(Z) we have X2n+1 −X = I2. First, we observe that X cannot be of the form
aI2 where a ∈ Z. Otherwise we would have a2n+1 = a + 1, which cannot occur
(either if a ∈ {−1, 0, 1} or if |a| > 1 since then a prime divisor of a divides a2n+1

but not a + 1). It follows that the minimal polynomial of X is not of degree 1.
Thus, this minimal polynomial is the characteristic polynomial x2 − tx + det(X)
(where t is the trace of X). Another remark is that det(X) ∈ {−1, 1}. This is
readily deduced from det(X) · det(X2n − I2) = 1 (since X(X2n − I2) = I2) with
det(X) and det(X2n − I2) in Z (note that X2n − I2 ∈ M2(Z)). Now, we show
that we are led to a contradiction in the two cases det(X) = 1 and det(X) = −1.
If det(X) = 1, then the polynomial x2n+1 − x − 1 is a multiple of the minimal
polynomial x2 − tx + 1. Thus, the complex roots r, 1

r of the latter are also roots
of x2n+1 − x − 1. This provides the relations r2n+1 = r + 1 and r2n+1 = 1 − r2n,
hence r2n = −r and so r + 1 = r · r2n = −r2. Therefore r2 + r + 1 = 0 and r must
be a cubic root of unity different from 1. However, from r2n+1 = −r2 we obtain
r2n−1 = −1, which is wrong when r is a cubic root of unity. We have reached our
contradiction.
Similarly, if det(X) = −1, the roots s,− 1

s of the minimal polynomial x2 − tx − 1
must be roots of x2n+1 − x− 1. This time, we get the relations s2n+1 = s+ 1 and
s2n+1 = s2n − 1. Thus, s2n = s+ 2 and so s(s+ 2) = s+ 1, that is, s2 − s− 1 = 0
and s ∈ { 1+

√
5

2 , 1−
√

5
2 }. However, we would have s2n+1 = s + 1 = s2, hence

s2n−1 = 1, which is obviously wrong. Again, we obtain a contradiction and the
proof is complete.
Also solved by Moti Levy, Rehovot, Israel; Moubinool Omarjee, Paris,
France and the proposer.

147. Proposed by Anastasios Kotronis, Athens, Greece. Let an be the sequence
defined by the relations

an+3 −
(

1 +
b− p− 1
n+ 3

)
an+2 +

b− 2a
n+ 3

an+1 +
2a
n+ 3

an = 0

and

a0 = 1, a1 = b− p, a2 = a+
(b− p)2 − p

2
,

where a, b ∈ R \ {−2,−2, 0, 1, . . .}.
(1) Show that limn→∞ np+1an = ea+b

Γ(−p) .

(2) Find limn→∞ n
(
np+1an − ea+b

Γ(−p)

)
if it exists.
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Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. Note that the recurrence relation defining the
an’s can be written in the following way

(n+ 3)an+3 − (n+ 2)an+2 − (b− p)an+2 + (b− 2a)an+1 + 2a an = 0 (1)

So, if we define G(x) =
∑∞

n=0 anx
n, then it follows from (1) and the initial condi-

tions imposed on a0, a1 and a2, that

(1− x)G′(x) + (p− (1− x)(b+ 2ax))G(x) = 0

This proves that x 7→ (1− x)−pe−bx−ax2
G(x) is constant (just calculate the deriv-

ative), and since it is equal to 1 for x = 0 we conclude that

G(x) = (1− x)pebx+ax2

So, let Log be the principal branch of the logarithm, and define the analytic function

G(z) = (1− z)pebz+az2
= epLog(1−z) ebz+az2

for z ∈ C \ [1,+∞). The above discussion shows that G(z) =
∑∞

n=0 anz
n for z in

the open unit disc D(0, 1). If fact G is analytic in the interior of any set of the form

∆φ = {z ∈ C : |Arg(z − 1)| ≥ φ}

where 0 < φ < π/2. Moreover, since k : z 7→ ebz+az2
is an entire function (i.e.

analytic in the hole complex plane), we have

k(z) = k(1)− k′(1)(1− z) +O(1− z)2)

as z → 1, and consequently:

G(z) = k(1)(1− z)p − k′(1)(1− z)p+1 +O(1− z)p+2)

as z → 1 in ∆φ \ {1}. Using Corollary 3. from [“Singularity analysis of generating
functions”, Siam J. Disc. Math., Vol. 3(2),pp. 216–240 (1990) by Flajolet and
Odlyzko], we conclude that

an = k(1)
(
n− p− 1

n

)
− k′(1)

(
n− p− 2

n

)
+O(n−p−3)

Now, noting that

k(1) = ea+b,

k′(1) = ea+b(b+ 2a)(
n− p− 1

n

)
=

1
Γ(−p)

(
1

np+1
+
p(p+ 1)
2np+2

+O
(

1
np+3

))
(
n− p− 2

n

)
= − p+ 1

Γ(−p)np+2
+O

(
1

np+3

)
Thus

np+1an =
ea+b

Γ(−p)
− (p+ 2b+ 4a)ea+b

2Γ(−p− 1)
· 1
n

+O
(

1
n2

)
In particular,

lim
n→∞

np+1an =
ea+b

Γ(−p)
, and lim

n→∞
n

(
np+1an −

ea+b

Γ(−p)

)
= − (p+ 2b+ 4a)ea+b

2Γ(−p− 1)
.
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Solution 2 by by Moti Levy, Rehovot, Israel. Let F (z) :=
∑∞

n=0 anz
n be the

generating function of the sequence (an)n≥0 . We rewrite the recurrence formula
and multiply by zn.

(n+ 3) an+3 − (n+ 3) an+2 − (b− p− 1) an+2 + (b− 2a) an+1 + 2a ∗ an = 0,

4
∞∑

n=0

(n+ 3) an+3z
n−

∞∑
n=0

(n+ 3) an+2z
n− (b− p− 1)

∞∑
n=0

an+2z
n

+(b− 2a)
∞∑

n=0

an+1z
n+2a∗

∞∑
n=0

anz
n= 0.

z−2

( ∞∑
n=0

an+3z
n+3

)′

−z−1

( ∞∑
n=0

an+2z
n+2

)′

− (b− p) z−2
∞∑

n=0

an+2z
n+2+(b− 2a) z−1

∞∑
n=0

an+1z
n+1+2a∗

∞∑
n=0

anz
n

=0,

z−2
(
F (z)− a0 − a1z − a2z

2
)′
− z−1 (F (z)− a0 − a1z)

′

− (b− p) z−2 (F (z)− a0 − a1z) + (b− 2a) z−1 (F (z)− a0) + 2aF (z)
= 0,

(
F (z)− a0 − a1z − a2z

2
)′
− z (F (z)− a0 − a1z)

′

− (b− p) (F (z)− a0 − a1z) + (b− 2a) z (F (z)− a0) + 2az2F (z)
= 0,

F
′
(z) (1− z) + F (z)

(
− (b− p) + (b− 2a) z + 2az2

)
= 0

F
′
(z) (1− z) = F (z)

(
(b− p)− (b− 2a) z − 2az2

)
Finally we obtain the differential equation for F (z) ,

F
′
(z)

F (z)
= b+ 2az +

p

z − 1
, F (0) = 1.

lnF (z) = bz + az2 + p ln (z − 1) + c

F (z) = keaz2+bz (z − 1)p

1 = F (0) = k (−1)p

k =
1

(−1)p = (−1)p

The generating function is

F (z) = eaz2+bz · (1− z)p
.

The Darboux’s lemma (see [1] , Theorem 5.3.1 on page 179) is now used to evaluate
the asymptotic growth of the generating function coefficients an,
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Theorem. (”Darboux’s lemma”)
Let v(z) be analytic in some disk |z| < 1 + η, η > 0 and suppose that in a neigh-
borhood of z = 1 it has the expansion

v (z) =
∑
j≥0

vj (1− z)j
.

Let β /∈ {. . . ,−2− 1, 0, 1, 2, ...}. Then

[zn]
{

(1− z)β
v (z)

}
= [zn]


m∑

j=0

vj (1− z)j

+O
(
n−m−β−2

)
=

m∑
j=0

vj

(
n− β − j − 1

n

)
+O

(
n−m−β−2

)
.

The function eaz2+bz is entire and the first terms of its power series are,

eaz2+bz = ea+b (1− (2a+ b) (1− z) + · · · ) .

(1) Set m = 0, β = p, R 3 p /∈ {... − 2,−1, 0, 1, ...}, v (z) = eaz2+bz, a, b ∈ R;
and apply the Darboux’s lemma above to obtain,

an = ea+b

(
n− p− 1

n

)
+O

(
n−p−2

)
.

Using the well-known asymptotic expansion of the binomial coefficient:(
n− p− 1

n

)
∼ n−p−1

Γ (−p)

[
1 +

p (p+ 1)
2n

+
p (p+ 1) (p+ 2) (3p+ 1)

24n2
+ · · ·

]
,

an = ea+b n
−p−1

Γ (−p)

[
1 +

p (p+ 1)
2n

+
p (p+ 1) (p+ 2) (3p+ 1)

24n2
+ · · ·

]
+O

(
n−p−2

)
,

which implies

an = ea+b n
−p−1

Γ (−p)
+O

(
n−p−2

)
,

and

lim
n→∞

np+1an =
ea+b

Γ (−p)
.

(2) Now we need an extra term.
Set m = 1, β = p, R 3 p /∈ {... − 2,−1, 0, 1, ...}, v (z) = eaz2+bz, a, b ∈ R; and
apply the Darboux’s lemma above to obtain

an =
m∑

j=0

vj

(
n− β − j − 1

n

)
+O

(
n−m−β−2

)
= ea+b

[(
n− p− 1

n

)
− (2a+ b)

(
n− p− 2

n

)]
+O

(
n−p−3

)
.

an = ea+b n
−p−1

Γ (−p)

[
1 +

p (p+ 1)
2n

+
p (p+ 1) (p+ 2) (3p+ 1)

24n2
+ · · ·

]
− (2a+ b) ea+b n−p−2

Γ (−p− 1)

[
1 +

(p+ 1) (p+ 2)
2n

+
(p+ 1) (p+ 2) (3p+ 4)

24n2
+ · · ·

]
+O

(
n−p−3

)
.
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n

(
np+1an −

ea+b

Γ (−p)

)
= ea+b

(
p (p+ 1)
2Γ (−p)

− 2a+ b

Γ (−p− 1)

)
+O

(
n−1

)
.

lim
n→∞

n

(
np+1an −

ea+b

Γ (−p)

)
= ea+b

(
p (p+ 1)
2Γ (−p)

− 2a+ b

Γ (−p− 1)

)
=

ea+b

Γ (−p)
(p+ 1)

(p
2

+ 2a+ b
)
.

Reference:
[1] Wilf, Herbert S., ”Generatingfunctionlogy”, 2nd edition, Academic Press, 1992.
Also solved by the proposer.

148. Proposed by D.M. Bătineţu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzǎu,
Romania. Find

lim
x→∞

(
xcosh2 t

(
(Γ(x+ 1))−(sinh2 t)/x − (Γ(x+ 2))−(sinh2 t)/(x+1)

))
.

where t ∈ R and Γ is the Gamma function.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The answer is (sinh2 t)esinh2 t.

Using the well known expansion, in the neighborhood of +∞:

log Γ(x+ 1) = x log x− x+
1
2

log x+
1
2

log(2π) +O
(

1
x

)
we see immediately that

(Γ(x+ 1))1/x = exp
(

log x− 1 +
1
2

log x
x

+
1
2x

log(2π) +O
(

1
x2

))
=
x

e

(
1 +

1
2

log x
x

+
1
2x

log(2π) +O
(

log2 x

x2

))
and consequently, for a nonzero α we have in the neighborhood of +∞:

(Γ(x+ 1))α/x =
xα

eα

(
1 +

α

2
log x
x

+
α

2x
log(2π) +O

(
log2 x

x2

))
But

log(1 + x)
1 + x

=
log x
x

(
1 +

log(1 + 1/x)
log x

)(
1 +

1
x

)−1

=
log x
x

+O
(

log x
x2

)
(1 + x)α = xα

(
1 +

α

x
+O

(
1
x2

))
Thus

(Γ(x+ 2))α/(x+1) =
xα

eα

(
1 +

α

x

)(
1 +

α

2
log x
x

+
α

2x
log(2π)

)
+O

(
log2 x

x2−α

)
=
xα

eα

(
1 +

α

2
log x
x

+
(
1 + log

√
2π
) α
x

)
+O

(
log2 x

x2−α

)
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Hence

x1−α
(
(Γ(x+ 1))α/(x) − (Γ(x+ 2))α/(x+1)

)
= −αe−α +O

(
log2 x

x

)
Therefore,

lim
x→∞

(
x1−α

(
(Γ(x+ 1))α/(x) − (Γ(x+ 2))α/(x+1)

))
= −αe−α.

which is also valid when α = 0. Choosing α = − sinh2 t we get the announced
answer.
Solution 2 by by Soumitra Mandal, Chandar Nagore, India.
Since,

lim
x→∞

x
√

Γ(x+ 1)
x

= lim
n→∞
n∈N

n
√
n!
n

= lim
n→∞

n

√
n!
nn

D′ALEMBERT︷︸︸︷
= =

= lim
x→∞

(
(n+ 1)!
n!

· 1(
1 + 1

n

)n ·
1

n+ 1

)
=

1
e

Now, we have

lim
x→∞

(
x+1
√

Γ(x+ 2)
x
√

Γ(x+ 1)

)− sinh2(t)

= lim
x→∞

(
x+1
√

Γ(x+ 2)
x+ 1

· 1
x
√

Γ(x+1)

x

·x+ 1
x

)− sinh2(t)

= 1

∴ lim
x→∞

u(x)− 1
lnu(x)

= 1 where u(x) =

(
x+1
√

Γ(x+ 2)
x
√

(x+ 1)

)− sinh2(t)

again,

lim
x→∞

(
u(x)

)x

= lim
x→∞

(
x+1
√

Γ(x+ 2)
x
√

Γ(x+ 1)

)−x sinh2(t)

= lim
x→∞

(
Γ(x+ 2)
Γ(x+ 1)

· 1
x+1
√

Γ(x+ 2)

)− sinh2(t)

= lim
x→∞

(
1

x+1
√

Γ(x+2)

x+1

)− sinh2(t)

= e− sinh2(t)

∴ lim
x→∞

(
xcosh2(t)

((
Γ(x+ 1)

)− sinh2(t)
x −

(
Γ(x+ 2)

)− sinh2(t)
x+1

))

= lim
x→∞

(
−xcosh2(t)

(
Γ(x+ 1)

) sinh2(t)
x · u(x)− 1

lnu(x)
· lnu(x)

)

= lim
x→∞

(
−

(
x
√

Γ(x+ 1)
x

)− sinh2(t)

·u(x)− 1
lnu(x)

· ln
(
u(x)

)x
)

= sinh2(t)esinh2(t)
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Solution 3 by Moti Levy, Rehovot, Israel. Let a = cosh2 t then our limit
becomes

L = lim
x→∞

xa

((
Γ (x+ 1)

1
x

)1−a

−
(
Γ (x+ 2)

1
x+1

)1−a
)

= lim
x→∞

xa
(
Γ (x+ 1)

1
x

)1−a

1−

(
Γ (x+ 2)

1
x+1

Γ (x+ 1)
1
x

)1−a
 .

Using the asymptotic expression for Γ (x+ 1) ,

Γ (x+ 1) ∼
√

2πx
(x
e

)x

,

we obtain

Γ (x+ 1)
1
x ∼ x

e
,

Γ (x+ 2)
1

x+1 ∼ x+ 1
e

.

Hence

L = lim
x→∞

xa
(x
e

)1−a
(

1−
(
x+ 1
x

)1−a
)

= ea−1 lim
x→∞

x

(
1−

(
x+ 1
x

)1−a
)

= ea−1 lim
x→∞

1−
(

x+1
x

)1−a

x−1
.

Applying L’Hopital’s rule

L = ea−1 lim
x→∞

− (1− a)
(

x+1
x

)−a (−x−2
)

(−x−2)
= (a− 1) ea−1.

lim
x→∞

xcosh2 t

((
Γ (x+ 1)

1
x

)− sinh2 t

−
(
Γ (x+ 2)

1
x+1

)− sinh2 t
)

= (cosh

2t− 1e(cosh
2 t−1) = esinh2 t sinh2 t.

Also solved by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy; Moubinool Omarjee, Paris, France and the
proposers.

149. Proposed by Arkady Alt, San Jose, California, USA. Let D be the set of
strictly decreasing sequences of positive real numbers with first term equal to 1.

For given positive p, r and any xN = (x1, x2, . . .) ∈ D, let S(xN) =
∑∞

n=1

xp+r
n

xp
n+1

if

this series converges and define S(xN) = ∞ otherwise. Find inf{S(xN)|xN ∈ D}.
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria.

The answer is A(p, r) def=
(

(p+ r)p+r

rrpp

)1/r

.
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Consider a sequence x(N) ∈ D. For n > 2 we have, using Hölder’s inequality:

n−1∑
k=1

xr
k =

n−1∑
k=1

xr
k

x
pr/(p+r)
k+1

· xpr/(p+r)
k+1

≤

n−1∑
k=1

(
xr

k

x
pr/(p+r)
k+1

) p+r
r


r

p+r (
n−1∑
k=1

(
x

pr/(p+r)
k+1

) p+r
p

) p
p+r

≤

(
n−1∑
k=1

xp+r
k

xp
k+1

) r
p+r
(

n−1∑
k=1

xr
k+1

) p
p+r

So we have proved that(
n−1∑
k=1

xr
k

)1+p/r

≤

(
n−1∑
k=1

xp+r
k

xp
k+1

)(
n∑

k=2

xr
k

)p/r

(1)

On the other hand, using the arithmetic mean-geometric mean inequality, we have
for x, t > 0 that

1 + x

1 + t
=

1 + t(x/t)
1 + t

≥
(x
t

)t/(1+t)

Applying this with x =
∑n−1

k=2 x
r
k and t = p/r we see that(

n−1∑
k=1

xr
k

)1+p/r

≥ (1 + t)1+t

tt

(
n−1∑
k=2

xr
k

)p/r

Or equivalently (
n−1∑
k=1

xr
k

)1+p/r

≥ A(p, r)

(
−xr

n +
n∑

k=2

xr
k

)p/r

(2)

Combining (1) and (2) we get

n−1∑
k=1

xp+r
k

xp
k+1

≥ A(p, r)
(

1− xr
n∑n

k=2 x
r
k

)p/r

(3)

and this is also valid for n = 2. Now, let us consider two cases:

• If
∑∞

k=1 x
r
k = +∞ then from the inequality

0 ≤ xr
n∑n

k=2 x
r
k

≤ xr
1∑n

k=2 x
r
k

we conclude that

lim
n→∞

xr
n∑n

k=2 x
r
k

= 0

• If
∑∞

k=1 x
r
k = ` < +∞, then clearly limn→∞ xr

n = 0 and again

lim
n→∞

xr
n∑n

k=2 x
r
k

= 0
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Combining the above results and letting n tend to infinity in (3) we conclude that
S(xN) ≥ A(p, r), and consequently

inf{S(xN)|xN ∈ D} ≥ A(p, r) (4)

Conversely, consider the sequence aN = (an)n≥1 defined by an = αn−1 with α =(
p

p+r

)1/r

< 1. Clearly we have

S(aN) =
∞∑

n=1

α(r+p)(n−1)

αpn
=

1
αp

· 1
1− αr

=
(
p+ r

p

)p/r

· p+ r

r
= A(p, r).

Hence,inf{S(xN)|xN ∈ D} = A(p, r) and the lower bound is in fact attained on a
geometric sequence.
Also solved by the proposer.

150. Proposed by Cornel Ioan Vălean, Timiş, Romania. Find
∞∑

k=1

∞∑
n=1

(−1)k+nH
3
k+n

k + n
,

where Hn =
∑n

j=1 1/j denotes the nth harmonic number.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. We will use a general principle. Consider a an
analytic f in the unit disk D(0, 1), and suppose that its power series expansion is
given by f(z) =

∑∞
n=1 anz

n. Now, using the integral form of the remainder we may
write for |z| < 1 the following

∞∑
n=1

an+kz
n+k = f(z)−

k∑
n=1

f (n)(0)
n!

zn

=
zk+1

k!

∫ 1

0

(1− t)kf (k+1)(tz)dt

It follows that for |w| < 1 we have
∞∑

k=1

( ∞∑
n=1

an+kz
n+k

)
wk = z

∫ 1

0

( ∞∑
k=1

(f ′)(k)(tz)
k!

(zw(1− t))k

)
dt

= z

∫ 1

0

(
f ′(tz + zw(1− t))− f ′(tz)

)
dt

=
[

1
1− w

f(zw + tz(1− w))− f(tz)
]t=1

t=0

=
f(z)− f(zw)

1− w
− f(z) (1)

Now in our case we have an = H3
n/n and f(z) =

∑∞
n=1

H3
n

n zn. Since the series defin-
ing f(−1) does converge by the alternating series test (this is not straightforward
but it can be proved that the coefficients decrease to 0 starting from a certain index),
it is easy to show that uniformly in z ∈ (−1, 0) we have

∑∞
n=1 an+kz

n+k = O(log3 k)
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and the series
∑∞

k=1(log3 k) |w|k is convergent. Hence, we may take the limit as
z → (−1)+ in (1) to obtain

∞∑
k=1

( ∞∑
n=1

(−1)n+kH3
n+k

n+ k

)
wk =

f(−1)− f(−w)
1− w

− f(−1)

Now, the series
∞∑

k=1

( ∞∑
n=1

(−1)n+kH3
n+k

n+ k

)
is convergent (another non trivial statement that I will leave to the reader). So,
using Abel’s theorem we conclude that

∞∑
k=1

( ∞∑
n=1

(−1)n+kH3
n+k

n+ k

)
= lim

w→1−

f(−1)− f(−w)
1− w

− f(−1) (2)

Now, we are saved by our calculations in the solution to problem 140 in the previous
issue, where we have shown that

xf ′(x) =
∞∑

n=1

H3
nx

n

= − log3(1− x)
1− x

− π2

2
log(1− x)

1− x
+ 3

Li3(1− x)− Li3(1)
1− x

+
3
2

log(x) log2(1− x)
1− x

+
Li3(x)
1− x

and consequently

lim
x→(−1)+

xf ′(x) = − log3(2)
2

−π
2

4
log(2)+

3
2

(
Li3(2) +

iπ

2
log2(2)

)
−3

2
Li3(1)+

1
2
Li3(−1)

Recalling that

Li3(1) = ζ(3)

Li3(−1) = −3
4
ζ(3)

Li3(2) =
7
8
ζ(3) +

π2

4
− iπ

2
log2(2)

where for the last one we used the formula 6.7 from “Lewin, L. (1981). Polyloga-
rithms and Associated Functions. New York: North-Holland” to express Li3(2) in
terms of Li3(1/2) and we used formula 6.12 of the same book to evaluate Li3(1/2).
It follows that

lim
x→1−

(−f ′(−x)) = − 9
16
ζ(3)− 1

2
log3(2) +

π2

8
log(2)

So, by the Hospital rule we see that

lim
w→1−

f(−1)− f(−w)
1− w

= − 9
16
ζ(3)− 1

2
log3(2) +

π2

8
log(2) (3)

On the other hand f(−1) is given in the article of I. Mezö, “Nonlinear Euler sums”
in Pacific Journal of Mathematics (Vol. 272, No 1,2014), with a sign error in the



573

last term:

−f(−1) =
∞∑

n=1

(−1)nH3
n

n
=

π4

144
+
π2

8
log2 2− log4 2

4
− 9

8
log 2 ζ(3), (4)

Combining (2), (3) and (4) we conclude that
∞∑

k=1

( ∞∑
n=1

(−1)n+kH3
n+k

n+ k

)
=

π4

144
+(log 2+log2 2)

π2

8
− log3 2

2
− log4 2

4
−9(1 + log 4)

16
ζ(3)

which is the desired conclusion.
Solution 2 by Moti Levy, Rehovot, Israel.

Let F (z) :=
∑∞

k=1

∑∞
n=1

H3
k+n

k+n z
k+n, |z| < 1. Setting m = k + n and rearranging

the order of summation give

F (z) =
∞∑

m=2

(
H3

m − H3
m

m

)
zm, |z| < 1. (1)

Let f (z) be the generating function of the sequence
(
H3

m

)
m≥1

. Expression of f (z)
appeared in [1],

f (z) =
1

1− z

(
−π

2

2
ln (1− z)− ln3 (1− z) +

3
2

ln2 (1− z) ln z + 3Li3 (1− z) + Li3 (z)− 3ζ (3)
)
.

(2)
The function f (z) is the analytic continuation of

∑∞
m=1H

3
mz

m, |z| < 1 to C/ [1,∞).
The second term in (1) can be obtained by integration term by term of

∑∞
m=1H

3
mz

m, |z| <
1,

∞∑
m=2

H3
m

m
zm =

∫ z

0

∞∑
m=1

H3
mt

m−1dt− z, |z| < 1.

Let

G (z) := (f (z)− z)−
(∫ z

0

f (t)
t
dt− z

)
= f (z)−

∫ z

0

f (t)
t
dt. (3)

The function G (z) is the analytic continuation of F (z) to C/ [1,∞) .

ThusG (−1) = f (−1)−
∫ −1

0
f(t)

t dt is finite real number, and it is equal to
∑∞

k=1

∑∞
n=1 (−1)k+n H3

k+n

k+n .

Relation (4) can be found in [2], (6.10) page 155,

Li3 (1− x) = −Li3

(
x

x− 1

)
−Li3 (x)+Li3 (1)+

π2

6
ln (1− x)−1

2
ln2 (1− x) lnx+

1
6

ln3 (1− x) .

(4)
Using (4), f (z) in (2) is simplified as follows:

f (z) =
1

1− z

(
−1

2
ln3 (1− z)− 3Li3

(
z

z − 1

)
− 2Li3 (z)

)
.

f (−1) =
1
2

(
−1

2
ln3 2− 3Li3

(
1
2

)
− 2Li3 (−1)

)
. (5)

These special values are known,

Li3

(
1
2

)
=

1
24
(
4 ln3 2 + 21ζ (3)− 2π2 ln 2

)
, (6)

Li3 (−1) = −3
4
ζ (3) . (7)
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f (−1) =
1
2

(
−1

2
ln3 2− 3

24
(
4 ln3 2 + 21ζ (3)− 2π2 ln 2

)
− 2

(
−3

4
ζ (3)

))
(8)

=
1
8
π2 ln 2− 9

16
ζ (3)− 1

2
ln3 2. (9)

∫ −1

0

f (u)
u

du =
∫ 1

0

f (−u)
u

du (10)

=
∫ 1

0

1
(1 + u)u

(
−1

2
ln3 (1 + u)− 3Li3

(
u

1 + u

)
− 2Li3 (−u)

)
du

= −1
2

∫ 1

0

ln3 (1 + u)
(1 + u)u

du− 3
∫ 1

2

0

Li3 (u)
u

du− 2
∫ 1

0

Li3 (−u)
(1 + u)u

du

∫ 1

0

ln3 (1 + u)
(1 + u)u

du =
∫ 1

0

ln3 (1 + u)
u

du−
∫ 1

0

ln3 (1 + u)
1 + u

du

=
(

1
15
π4 +

1
4
π2 ln2 2− 1

4
ln4 2− 6Li4

(
1
2

)
− 21

4
ζ (3) ln 2

)
− 1

4
ln4 2.

∫ 1
2

0

Li3 (u)
u

du = Li4

(
1
2

)
.

∫ 1

0

Li3 (−u)
(1 + u)u

du =
∫ 1

0

Li3 (−u)
u

du−
∫ 1

0

Li3 (−u)
1 + u

du = − 7
720

π4 −
(
π4

288
− 3

4
ζ (3) ln 2

)
= − 19

1440
π4 +

3
4
ζ (3) ln 2.∫ −1

0

f (u)
u

du =
−1
144

π4 − 1
8
π2 ln2 2 +

1
4

ln4 2 +
9
8
ζ (3) ln 2.

∞∑
k=1

∞∑
n=1

(−1)k+n H
3
k+n

k + n
=

1
144

π4+
1
8
π2 (1 + ln 2) ln 2−1

4
(
ln3 2

)
(ln 2 + 2)−9

8
ζ (3) ln 2− 9

16
ζ (3) .

References:
[1] István Mezõ, ”Nonlinear Euler Sums”, The Pacific Journal of Mathematics,
Vol.272, No. 1, 2014.

[2] Leonard Lewin, ”Polylogarithms and Associated Function”, North Holland,
1981.
Also solved by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy and the proposer.

151. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove that
∞∑

n=1

1
n

∞∑
k=n

1
1 + k2

=
(

3
2

+
π

2
cothπ

) ∞∑
k=1

1
k(1 + k2)

−
∞∑

k=1

1
k(1 + k2)2

.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. First recall that for x /∈ iZ we have

π coth(πx) =
1
x

+
∞∑

k=1

2x
x2 + k2
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So, taking x = 1 and rearranging we get

1
2

+
π

2
cothπ =

∞∑
k=0

1
1 + k2

(1)

Now, define

A =
∞∑

k=1

1
k(1 + k2)

B =
∞∑

k=1

1
k(1 + k2)2

D =
∞∑

n=1

1
n

( ∞∑
k=n

1
1 + k2

)
C =

(
1
2

+
π

2
cothπ

)
A

Using (1) we see that

C =

∑
j=0

1
1 + j2

( ∞∑
k=1

1
k(1 + k2)

)

and because, clearly we have∑
k,j≥1

1
k(1 + k2)(1 + j2)

=
∑

k,j≥1

1
j(1 + j2)(1 + k2)

we see immediately that

C = A+
∑

k,j≥1

1
k(1 + k2)(1 + j2)

= A+
1
2

∑
k,j≥1

1
(1 + k2)(1 + j2)

(
1
k

+
1
j

)

= A+
1
2

 ∑
k=j≥1

k + j

kj(1 + k2)(1 + j2)
+ 2

∑
1≤j<k

k + j

kj(1 + k2)(1 + j2)


That is

C = A+B +
∑

1≤j<k

k + j

kj(1 + k2)(1 + j2)︸ ︷︷ ︸
E

(2)

Now, note that for k > j we have

k + j

kj(1 + k2)(1 + j2)
=

k2 − j2

kj(k − j)(1 + k2)(1 + j2)

=
(k2 + 1)− (j2 + 1)

kj(k − j)(1 + k2)(1 + j2)

=
1

kj(k − j)(1 + j2)
− 1
kj(k − j)(1 + k2)

=
1

j2(1 + j2)

(
1

k − j
− 1
k

)
− 1
k(1 + k2)

(
1

k − j
+

1
j

)
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Thus

E =
∞∑

j=1

1
j2(1 + j2)

∞∑
k=j+1

(
1

k − j
− 1
k

)
−

∞∑
k=2

1
k2(1 + k2)

k−1∑
j=1

(
1

k − j
+

1
j

)

=
∞∑

j=1

Hj

j2(1 + j2)
−

∞∑
k=2

2Hk−1

k2(1 + k2)

where Hn =
∑n

k=1 1/k is the nth harmonic number. Noting that Hk−1 = Hk−1/k
we conclude that

E = 2
∞∑

k=1

1
k3(1 + k2)

−
∞∑

k=1

Hk

k2(1 + k2)

But
1

k2(1 + k2)
=

1
k2
− 1

1 + k2

So

E = 2
∞∑

k=1

1
k3
− 2

∞∑
k=1

1
k(1 + k2)

−
∞∑

k=1

Hk

k2
+

∞∑
k=1

Hk

1 + k2

That is

E = 2
∞∑

k=1

1
k3
−

∞∑
k=1

Hk

k2
− 2A+D

where we used the straightforward fact that
∞∑

k=1

Hk

1 + k2
=

∑
1≤n≤k

1
n(1 + k2)

=
∞∑

n=1

1
n

∞∑
k=n

1
1 + k2

= D

Replacing the expression for E in (2) we get

C +A−B = D + 2
∞∑

k=1

1
k3
−

∞∑
k=1

Hk

k2
(3)

The final step is to note that

2
∞∑

k=1

1
k3

=
∞∑

k=1

Hk

k2
(4)

to conclude that

D = C +A−B =
(

3
2

+
π

2
cothπ

)
A−B

which is the desired conclusion.
The only remaining step is to prove the well-known result (4). This can be done as
follows: First, note that

Hk =
∞∑

n=1

(
1
n
− 1
n+ k

)
=

∞∑
n=1

k

n(n+ k)
.
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Hence
∞∑

k=1

Hk

k2
=
∑

k,n≥1

1
kn(k + n)

=
∑

k,n≥1

k + n

kn(k + n)2

= 2
∑

k,n≥1

1
k(k + n)2

= 2
∞∑

k=1

1
k

∑
j=k+1

1
j2

= 2
∑

1≤k<j

1
kj2

= 2
∞∑

j=2

1
j2

j−1∑
k=1

1
k

= 2
∞∑

j=2

1
j2

(
Hj −

1
j

)

= 2
∞∑

j=1

Hj

j2
− 2

∞∑
j=1

1
j3

and (4) follows immediately. This concludes the solution of the problem
Solution 2 by Moti Levy, Rehovot, Israel.
By changing order of summation,

∞∑
n=1

1
n

∞∑
k=n

1
1 + k2

=
∞∑

k=1

1
1 + k2

k∑
n=1

1
n

=
∞∑

k=1

Hk

1 + k2
.

One can recognize that

3
2

+
π

2
cothπ = 2 +

∞∑
k=1

1
1 + k2

,

so the original problem can be restated as follows: Show that,
∞∑

k=1

Hk

1 + k2
=

(
2 +

∞∑
k=1

1
1 + k2

)( ∞∑
k=1

1
k (1 + k2)

)
−

∞∑
k=1

1
k (1 + k2)2

. (11)

The left hand side of (11) is a reminiscent of Euler’s sum, which can be evaluated
using complex summation method. See the classical article by Flajolet and Salvy
[1].

2
∞∑

k=1

r (k)Hk +
∞∑

k=1

r
′
(k) +

∑
c∈{0}∪{poles of r(s)}

Residue
[
r (s) (γ + ψ (−s))2 , c

]
= 0

(12)
where r (s) is rational function satisfying the two conditions: 1) r (s) is O

(
s−2
)

at
infinity, 2) r (s) has no pole in Z\ {0}.
The function ψ (s) is the Digamma function which satisfies,

γ + ψ (−s) =
1
s

+
∞∑

k=1

(
1
k
− 1
−s+ k

)
. (13)

Our rational function r (s) = 1
1+s2 , clearly meets the two conditions, and

∞∑
k=1

r
′
(k) = 2

∞∑
k=1

k

(1 + k2)2
. (14)

The residues are:
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Residue
[
r (s) (γ + ψ (−s))2 , 0

]
= 0,

Residue
[
r (s) (γ + ψ (−s))2 , i

]
= −1

2
i (γ + ψ (−i))2 ,

Residue
[
r (s) (γ + ψ (−s))2 ,−i

]
=

1
2
i (γ + ψ (i))2 . (15)

We substitute (14) and (15) in (12) and get,
∞∑

k=1

Hk

1 + k2
=

∞∑
k=1

k

(1 + k2)2
− i

4

(
(γ + ψ (i))2 − (γ + ψ (−i))2

)
(16)

=
∞∑

k=1

k

(1 + k2)2
− i

4
((γ + ψ (i)) + (γ + ψ (−i))) ∗ ((γ + ψ (i))− (γ + ψ (−i))) .

Now we use equation (13) to express the residues by infinite series,

− i

4
((γ + ψ (i)) + (γ + ψ (−i))) ∗ ((γ + ψ (i))− (γ + ψ (−i)))

= − i
4

(
1
i

+
∞∑

k=1

(
1
k
− 1
−i+ k

)
+−1

i
+

∞∑
k=1

(
1
k
− 1
i+ k

))
∗

∗

(
1
i

+
∞∑

k=1

(
1
k
− 1
−i+ k

)
+

1
i
−

∞∑
k=1

(
1
k
− 1
i+ k

))

= − i
4

( ∞∑
k=1

(
1
k
− 1
−i+ k

+
1
k
− 1
i+ k

))(
2
i

+
∞∑

k=1

(
1
k
− 1
−i+ k

− 1
k

+
1

i+ k

))

= − i
4

(
2
∞∑

k=1

1
k (1 + k2)

)(
2
i
− 2i

∞∑
k=1

1
1 + k2

)
=

( ∞∑
k=1

1
k (1 + k2)

)(
1 +

∞∑
k=1

1
1 + k2

)
.

(17)

Since k
(k2+1)2

= 1
k(1+k2) −

1
k(1+k2)2

, we can rewrite (17),

∞∑
k=1

Hk

1 + k2
=

∞∑
k=1

1
k (1 + k2)

+

( ∞∑
k=1

1
k (1 + k2)

)(
1 +

∞∑
k=1

1
1 + k2

)
−

∞∑
k=1

1
k (1 + k2)2

=

(
2 +

∞∑
k=1

1
1 + k2

)( ∞∑
k=1

1
k (1 + k2)

)
−

∞∑
k=1

1
k (1 + k2)2

.

Reference:
[1] Philippe Flajolet and Bruno Salvy, ”Euler Sums and Contour Integral Repre-
sentations”, Experimental Mathematics, Vol. 7 (1998), No. 1.
Also solved by the proposer.
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——————————————————————————————————-
MATHCONTEST SECTION

——————————————————————————————————-

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
105. Let f : [0;+∞) → R be a continuous function such that lim

x→+∞
f(x) = L

exists (it may be finite or infinite). Prove that

lim
n→∞

1∫
0

f(nx) dx = L.

106. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Suppose
that f has infinitely many zeros, but there is no x ∈ (a, b) with f(x) = f ′(x) = 0.
(a) Prove that f(a)f(b) = 0. (b) Give an example of such a function on [0, 1].
107. Let A be a n × n complex matrix whose eigenvalues have absolute value at
most 1. Prove that

‖An‖ ≤ n

ln 2
‖A‖n−1.

(Here ‖B‖ = sup
‖x‖≤1

‖Bx‖ for every n× n matrix B and ‖x‖ =

√
n∑

i=1

|xi|2 for every

complex vector x ∈ Cn.)
108. Let k and n be positive integers with n ≥ k2 − 3k + 4, and let

f(z) = zn−1 + cn−2z
n−2 + · · ·+ c0

be a polynomial with complex coefficients such that

c0cn−2 = c1cn−3 = · · · = cn−2c0 = 0

Prove that f(z) and zn − 1 have at most n− k common roots.
109. Let n be a positive integer, and let p(x) be a polynomial of degree n with
integer coefficients. Prove that

max
0≤x≤1

∣∣p(x)∣∣ ≥ 1
en
.



580

Solutions

100. Let (an)n∈N be a sequence of real numbers such that lim
n→∞

n (an − 1) = l ∈

(−∞,∞) and let p ≥ 1 be a natural number. Calculate lim
n→∞

n∏
k=1

(
an + 1

p√
kn

)
.

(Jozsef Wildt IMC 2016)

Solution 1 by Michel Bataille, Rouen, France. We show that the required
limit is e` if p = 1, e`+2 if p = 2 and ∞ if p ≥ 3.

From the hypothesis, we have an = 1 + `
n + o(1/n) as n → ∞, hence, in the

calculations that follow, we may suppose that n is large enough to ensure that
an > 0.Let

Pn =
n∏

k=1

(
an +

1
p
√
kn

)
= an

n

n∏
k=1

(
1 +

bn
k1/p

)
where bn = 1

n1/pan
. Note that bn ∼ 1

n1/p as n→∞ (since lim
n→∞

an = 1).

We set σn =
n∑

k=1

ln
(
1 + bn

k1/p

)
so that ln(Pn) = n ln(an) + σn.

Since

n ln(an) = n ln
(

1 +
`

n
+ o(1/n)

)
= n

(
`

n
+ o(1/n)

)
= `+ o(1)

as n → ∞, we see that lim
n→∞

n ln(an) = `. To study σn, we first recall some well-

known results: x− x2

2 ≤ ln(1 + x) ≤ x for positive x,
n∑

k=1

1
n ∼ ln(n) and, if α < 1,

n∑
k=1

1
nα ∼ n1−α

1−α as n→∞. From the first of these results, we readily obtain

bnun −
b2n
2
vn ≤ σn ≤ bnun (1)

with un =
n∑

k=1

1
k1/p and vn =

n∑
k=1

1
k2/p . We now distinguish the cases p = 1, p = 2

and p ≥ 3. If p = 1, then bn ∼ 1
n , un ∼ ln(n) and lim

n→∞
vn = π2

6 so that

lim
n→∞

bnun = lim
n→∞

b2nvn = 0 and from (1), lim
n→∞

σn = 0. Thus, lim
n→∞

ln(Pn) = `

and lim
n→∞

Pn = e`. If p = 2, then bn ∼ 1√
n
, un ∼ 2

√
n and vn ∼ ln(n) as

n → ∞. It follows that lim
n→∞

bnun = 2 and lim
n→∞

b2nvn = 0. With the help of (1),

we deduce that lim
n→∞

σn = 2 and then that lim
n→∞

Pn = e`+2. Lastly, if p ≥ 3, then

un ∼ p
p−1 · n

1− 1
p , vn ∼ p

p−2 · n
1− 2

p and

1− bnvn

2un
≤ σn

bnun
≤ 1
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with bnvn

2un
∼ n

− 1
p

2 · p
p−2n

1− 2
p · p−1

p n
1
p−1 = p−1

2(p−2) · n
−2/p. Thus, lim

n→∞
bnvn

2un
= 0 and

therefore σn ∼ bnun as n→∞. As a result, lim
n→∞

σn = ∞ (since bnun ∼ p
p−1 ·n

1− 2
p

and p > 2) and lim
n→∞

Pn = ∞ follows.

Solution 2 by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy. Let L(p) be the limit we are searching. Clearly

an = 1 +
l

n
+ o

(
1
n

)
∫ n+1

1

ln
(
an +

1
p
√
xn

)
dx ≤

∫ n

1

ln
(
an +

1
p
√
xn

)
dx ≤

≤ ln

[
n∏

k=1

(
an +

1
p
√
kn

)]
=

n∑
k=2

ln
(
an +

1
p
√
kn

)
+ ln

(
an +

1
p
√
n

)
≤

≤
∫ n

1

ln
(
an +

1
p
√
xn

)
dx+ ln

(
an +

1
p
√
n

)
︸ ︷︷ ︸

→0

Since an → 1, the last term tends to zero. So the result is

L
.= lim

n→∞
exp

{∫ n

1

ln
(
an +

1
p
√
xn

)
dx

}
Moreover ∫ n

1

ln
(
an +

1
p
√
xn

)
dx =︸︷︷︸

x= 1
nyp

1
n

∫ n
−1
p

n
−2
p

p

yp+1
ln(an + y)dy =

=
y−p ln(an + y)

n

∣∣∣n−2/p

n−1/p
+

1
n

∫ n
−1
p

n
−2
p

dy

yp(an + y)
=

=
n2 ln(an + n

−2
p )

n
− n ln(an + n

−1
p )

n︸ ︷︷ ︸
→0

+
1
n

∫ n
−1
p

n
−2
p

dy

yp(an + y)

Let p > 2.

ln(an + n
−2
p ) = 1 + n

−2
p +

l

n
+ o

(
1
n

)
whence

n2 ln(an + n
−2
p )

n
∼ n ln

(
1 + n

−2
p +O

(
1
n

))
∼ n1− 2

p → +∞

Since

1
n

∫ n
−1
p

n
−2
p

dy

yp(an + y)
> 0

it follows ∫ n

1

ln
(
an +

1
p
√
xn

)
dx→ +∞ =⇒ L = +∞



582

Let p = 2.

n2 ln(an + n
−2
p )

n
∼ n ln

(
1 +

l + 1
n

+ o

(
1
n

))
∼ l + 1 + o(1)

Moreover

1
n

∫ n
−1
2

n−1

dy

y2(an + y)
=

1
n

(
1
a2

n

ln
an + y

y
− 1
any

∣∣∣n−1
2

n−1

)
=

=
1
na2

n

ln
an + n−1/2

n−1/2
− 1
na2

n

ln
an + 1

n
1
n

−
√
n

nan
+

n

nan
→ 1

It follows ∫ n

1

ln
(
an +

1√
xn

)
dx→ l + 2 =⇒ L = el+2

Let p = 1.

ln(an + n
−2
p ) = 1 +

l

n
+ o

(
1
n

)
1
n

∫ n
−1
p

n
−2
p

dy

yp(an + y)
=

1
n

∫ n−1

n−2

dy

y(an + y)
=

1
n

1
an

ln
y

an + y

∣∣∣n−1

n−2
→ 0

so ∫ n

1

ln
(
an +

1
xn

)
dx→ l + 1 =⇒ L = el

101. Let f, g : [a, b] → R be two nonnegative continuous functions. Assume that f
attains its maximum at a unique point on [a, b] and g attains its maximum at the
same point as f and possibly at other points.

1) Prove that lim
n→∞

b∫
a

fn+1(x)g(x)dx

b∫
a

fn(x)dx

= ‖f‖∞ ‖g‖∞ .

2) Does the result hold under no assumption on f and g?

(Jozsef Wildt IMC 2016)

Solution by Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italiy. Let p be the unique point such that f(p) = ||f ||∞. We
have also g(p) = ||g||∞.

fn+1g = fn · f · g ≤ fn||f ||∞||g||∞
so we get ∫ b

a
fn+1(x)g(x)dx∫ b

a
fn(x)dx

≤ ||f ||∞||g||∞
∫ b

a
fn(x)dx∫ b

a
fn(x)dx

= ||f ||∞||g||∞

We know by the continuity of f, the uniqueness of p and the compactness of [a, b]
that for any ε small enough there exist δε such that (I = [p− δε, p+ δε])

x ∈ I =⇒ f(x) ≥ ||f ||∞ − ε, g(x) ≥ ||g||∞ − ε

(this follows by the continuity alone) and

x ∈ [a, b]\I =⇒ f(x) ≤ ||f ||∞ − ε
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(here the uniqueness of p and compactness of [a, b] are used). Indeed let’s sup-
pose the above false. This means that: for any ε, for any Iδ

.= (p − δ, p + δ),
max

x∈[a,b]\Iδ

f(x) > ||f ||∞ − ε . Let’s take εk → 0 and Iδ fixed independent of

εk. This would imply the existence of a sequence {xk} ∈ [a, b]\Iδ, such that
f(xk) → ||f ||. From {xk}, via the compactness of [a, b], we can extract a subse-
quence {xkn

} → p′ ∈ [a, b]\Iδ. The continuity of f yields f(p′) = ||f || which is a
contradiction with the uniqueness of p.

∫ b

a
fn+1(x)g(x)dx∫ b

a
fn(x)dx

≥
∫

I
fn · f(x) · g(x)dx∫

I
fn(x)dx

(
1 +

∫
[a,b]\I

fndx∫
I

fndx

) ≥

≥ (||f ||∞ − ε)(||g||∞ − ε)

∫
I
fn · dx∫

I
fn(x)dx

(
1 +

∫
[a,b]\I

fndx∫
I

fndx

) =

= (||f ||∞ − ε)(||g||∞ − ε)
1(

1 +
∫
[a,b]\I

fndx∫
I

fndx

)

Now we show that

lim
n→∞

∫
[a,b]\I f

ndx∫
I
fndx

= 0

Indeed also by the continuity of f we know that there exists an interval I ′ ⊂ I such
that f ≥ ||f ||∞ − ε/2 and then∫

[a,b]\I f
ndx∫

I
fndx

≤

∫
[a,b]\I f

ndx∫
I′
fndx

≤ (b− a− |I|) · (||f ||∞ − ε)n

|I ′| · (||f ||∞ − ε/2)n
→ 0

We have proven that for any ε > 0 we have

(||f ||∞ − ε)(||g||∞ − ε) ≤
∫ b

a
fn+1(x)g(x)dx∫ b

a
fn(x)dx

≤ ||f ||∞||g||∞

that is the result.

b) If f and g attains their maximum at different points, the result needs not to be
true. Let f(x) = e−nx, g(x) = x.∫ 1

0

e−(n+1)xxdx = x
e−(n+1)x

−(n+ 1)

∣∣∣1
0
+

1
n+ 1

∫ 1

0

e−(n+1)xdx =

=
e−(n+1)

−(n+ 1)
+

1
(n+ 1)2

(1− e−n−1)

so

lim
n→∞

∫ 1

0
e−(n+1)xxdx∫ 1

0
e−nxdx

= lim
n→∞

1
(n+1)2 + e−n−1( −1

n+1 −
−1

(n+1)2 )
1
n (1− e−n)

= 0 6= ||e−x||∞||x||∞ = 1
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102. Let f ∈ C3 (Rn, R) with f (0) = f ′ (0) = 0. Prove that there exist h ∈
C3 (Rm, Sn (R)) , such that f (x) = xth (x)x, when Sn (R) , is the set of symmetric
matrix, and xt is the transpose of x.

(Jozsef Wildt IMC 2016)

Solution by Moubinool Omarjee, Paris, France. We have f (x) = xth (x)x,
where h(x) =

∫ 1

0
(1− u)H(ux)du with H(v) =

(
∂2f

∂xi∂xj
(v)
)

the Hessian of f, h is

of class C1 with theorems of derivative under integral sign.

103. Find the nature of the series
∑
n≥1

ei ln(pn)

pn
when (pn)n≥1 is the prime number

increasing order, and i imaginary complex number.

(Jozsef Wildt IMC 2016)

Solution We didnt receive any solution. The solutions for this problem can also
be sent during this issue.
104. Let a, b, and c be positive real numbers. Prove that(

(6n+ 1)a− b

n(b+ c)

)2

+
(

(6n+ 1)b− c

n(c+ a)

)2

+
(

(6n+ 1)c− a

n(a+ b)

)2

≥ 27

for any positive integer n ≥ 1.

(Jozsef Wildt IMC 2016)

Solution 1 by Arkady Alt, San Jose, California, USA.

Since x2 + y2 + z2 ≥ (x+ y + z)2

3
for any real x, y, z we obtain

∑
cyc

(
(6n+ 1)a− b

n (b+ c)

)2

≥ 1
3

(∑
cyc

(6n+ 1)a− b

n (b+ c)

)2

.

Since
∑
cyc

(6n+ 1)a− b

n (b+ c)
= 6

∑
cyc

a

b+ c
+

1
n

∑
cyc

a− b

b+ c
and by Cauchy Inequality

∑
cyc

a

b+ c
= (a+ b+ c)

∑
cyc

1
b+ c

− 3 =
1
2

(∑
cyc

(b+ c) ·
∑
cyc

1
b+ c

)
− 3 ≥ 9

2
− 3 =

3
2

then
∑
cyc

(6n+ 1)a− b

n (b+ c)
≥ 6 · 3

2
+

1
n

∑
cyc

a− b

b+ c
= 9 +

1
n

∑
cyc

a− b

b+ c
.

Noting that triples (a, b, c) and
(

1
b+ c

,
1

c+ a
,

1
a+ b

)
agreed in order

( (a− b)
(

1
b+ c

− 1
c+ a

)
=

(a− b)2

(b+ c) (c+ a)
≥ 0) by Rearrangement Inequality we

have∑
cyc

a

b+ c
≥
∑
cyc

b

b+ c
and, therefore,

∑
cyc

a− b

b+ c
≥ 0. Hence

∑
cyc

(6n+ 1)a− b

n (b+ c)
≥ 9 and

we finally obtain∑
cyc

(
(6n+ 1)a− b

n (b+ c)

)2

≥ 1
3

(∑
cyc

(6n+ 1)a− b

n (b+ c)

)2

≥ 1
3
· 81 = 27.

Solution 2 by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy. From a2 + b2 + c2 ≥ (a+ b+ c)2/3 which holds true
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regardless the sign of a, b, c, we get∑
cyc

(
(6n+ 1)a− b

n(b+ c)

)2

≥ 1
3

(∑
cyc

(6n+ 1)a− b

n(b+ c)

)2

so we come to prove (
6
∑
cyc

a

b+ c
+

1
n

∑
cyc

a− b

b+ c

)2

≥ 81

Now
∑
cyc

a

b+ c
≥ 3

2
is the famous Nesbitt’s inequality so it suffices to show that

∑
cyc

a− b

b+ c
≥ 0 ⇐⇒ a

b+ c
+

b

c+ a
+

c

a+ b
≥ b

b+ c
+

c

c+ a
+

a

a+ b
(1)

Let’s suppose a ≥ b ≥ c. It follows that
1

b+ c
≥ 1
a+ c

≥ 1
a+ b

The Rearrangement–inequality yields (1) being (a, b, c) and
(

1
b+ c

,
1

a+ c
,

1
a+ b

)
equally sorted.
t Let a ≥ c ≥ b. It follows that

1
b+ c

≥ 1
a+ b

≥ 1
a+ c

Again the Rearrangement–inequality yields (1) being (a, c, b) and
(

1
b+ c

,
1

a+ b
,

1
a+ c

)
equally sorted.
So we have got(

6
∑
cyc

a

b+ c
+

1
n

∑
cyc

a− b

b+ c

)2

≥

(
6
∑
cyc

a

b+ c
+ 0

)2

≥ 36
9
4

= 81

and this completes the proof.
Also solved by Henry Ricardo, Westchester Area Math Circle, Purchase,
NY, USA and Michel Bataille, Rouen, France and Nicuşor Zlota, Traian
Vuia Technical College, Focşani, Romania.
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A note on Mitrinović - Adamović and Lazarević inequalities

Edward Neuman

Abstract. Generalizations and refinements of Mitrinović - Adamović inequality
for trigonometric functions and I. Lazarević inequality for hyperbolic functions are
established. The main result is obtained using the Schwab-Borchardt mean.
Keywords: Mitrinović - Adamović and Lazarević inequalities, trigonometric and
hyperbolic functions, Schwab-Borchardt mean, classical bivariate means.

1. Introduction

In recent years the following inequalities

(cosx)1/3 <
sinx
x

(0 < |x| < π/2) (18)

and
(coshx)1/3 <

sinhx
x

(x 6= 0) (19)

have attracted attention of several researchers. Inequality (18) is due to D.S.
Mitrinović and A.A. Adamović while the inequality (19) has been discovered by
I. Lazarević. For details see [4, p. 238]. Several refinements of the inequalities
(18) and (19) appear in mathematical literature (see, e.g., [6]). Generalizations of
Mitrinović - Adamović and Lazarević inequalities to the two-parameter generalized
trigonometric, hyperbolic and Jacobian elliptic functions have been obtained re-
cently. For details the interested reader is referred to [7] and the references therein.
In this note we shall prove a chain of inequalities which in particular cases will
provide refinements of inequalities (18) and (19). In Section 2 we provide definitions
and notation. A main result of this note is established in Section 3.

2. DEFINITIONS

Let a and b be positive numbers. The Schwab - Borchardt mean of a and b, denoted
by SB(a, b) ≡ SB, is defined as follows

SB(a, b) =



(b2 − a2)1/2

cos−1(a/b)
if a < b,

(a2 − b2)1/2

cosh−1(a/b)
if b < a,

a if a = b

(20)

(see, e.g., [1], [3]). It is easy to prove that SB is a nonsymmetric and homogeneous
mean of degree 1 in variables a and b. This mean has been studied recently in [5],
[9], and [10].
For the later use we record two results involving the Schwab-Borchardt mean. The
first one is the invariance property (see [1], [3])

SB(a, b) = SB(A,
√
Ab), (21)
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where

A =
a+ b

2
(22)

is the arithmetic mean of a and b. The following bounds for SB

(ab2)1/3 < SB(a, b) <
a+ 2b

3
(23)

have been established in [9].
In what follows we will assume that the numbers a and b are positive and un-
equal. As usual, the symbols I, L and G will stand, respectively, for the identric,
logarithmic and geometric means of a and b:

I = e−1

(
aa

bb

) 1
a−b

, L =
a− b

log a− log b
,G =

√
ab (24)

(see [2]). A classical results states that all four means listed in (22) and (24) are
comparable, symmetric and homogeneous of degree 1 in their variables. Moreover,
the chain of inequalities

G < (AG2)1/3 <

[
G

(
A+G

2

)2
]1/3

< L <
1
3
(A+ 2G)

<
A+G

2
<

2A+G

3
< I < A

(25)

is satisfied for all numbers a and b. For more details see [8, 11, 12, 13, 14]

3. MAIN RESULT

We will need the following:
Proposition 3.1. Let a > 0 be such that a 6= 1. Further, let

λ =
a+ 1

2
and µ =

√
a.

Then the following inequalities:

a1/3 < (λa)2/9
<

[
µ

(
λ+ µ

2

)2
]2/3

<

(
a− 1
ln a

)2/3

<

[
1
3
(λ+ 2µ)

]2/3

<

(
λ+ µ

2

)2/3

<

[
1
3
(2λ+ µ)

]2/3

< (e−1a
a

a−1 )2/3 < λ2/3 < SB(a, 1).

(26)

hold true.

Proof. In order to establish the desired result we use (21) with b = 1 followed by
application of the left inequality in (23) to obtain

SB(a, 1) = SB
(
λ,
√
λ
)
> λ2/3.

This completes proof of the last inequality in (26). The remaining ones follow from
the chain of inequalities (25) where now

A = λ, G = µ, L =
a− 1
ln a

and I = (e−1a
a

a−1 ).

The desired result now follows. �



588

The main result of this note reads as follows:
Theorem 3.2. Let 0 < |x| < π/2. Then the following inequalities

(cosx)1/3 <
(
cos2

x

2
cosx

)2/9

<

√cosx

cos2
x

2
+
√

cosx

2

2/3

<

(
cosx− 1
ln(cosx)

)2/3

<

[
1
3

(
cos2

x

2
+ 2

√
cosx

)]2/3

<

cos2
x

2
+
√

cosx

2

2/3

<

[
1
3
(2 cos2

x

2
+
√

cosx
)2/3

<
(
e−1(cosx)

cos x
cos x−1

)2/3
<
(
cos2

x

2

)4/3

<
sinx
x

.

(27)

Proof. To obtain (27) we let in (20) a = cosx to obtain

SB(cosx, 1) =
sinx
x

and next utilize the chain of inequalities (26) with a as defined above and

λ = cos2
x

2
and µ =

√
cosx.

We omit further details. �

In a similar fashion one can obtain a refinement of Lazarević inequality (19) by
letting in (26) a = coshx, x 6= 0. Using (20) we obtain easily

SB(coshx, 1) =
sinhx
x

.

Next we apply Proposition 3.1 to obtain the desired result.
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JUNIOR PROBLEMS
——————————————————————————————————-
Solutions to the problems stated in this issue should arrive before October 15, 2017.

Proposals
66. Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam.
Let x, y, z be real numbers in the interval

[
1
2 , 2
]
. Find the minimum and maximum

possible value of

f(x, y, z) =
x

yz + 1
+

y

zx+ 1
+

z

xy + 1
.

67. Proposed by Daniel Sitaru, Mathematics Department, Colegiul National Eco-
nomic Theodor Costescu, Drobeta Turnu - Severin, Mehedinti, Romania.
Let n ∈ N such that n ≥ 2. Prove that in any triangle ABC the following relation-
ship holds:

∑(
n
√
b+ n

√
c− 2 n

√
a

n
√
b+ n

√
c

)2

+
3

n
√
abc

∏
( n
√
b+ n

√
c− n

√
a) ≤ 3.

68. Proposed by Michael Rozenberg, Tel Aviv, Israel and Leonard Giugiuc, National
College Traian, Drobeta Turnu Severin, Romania. Let a, b, c and d be non negative
real numbers, none three of which 0 such that a+ b+ c+ d = 4. Prove that

a2 + b2 + c2 + d2

ab+ bc+ cd+ da+ ac+ bd
+

12abcd
(ab+ bc+ cd+ da+ ac+ bd)2

≥ 1.

When equality occurs?

69. Proposed by Mohammed Aassila, Strasbourg, France.
Let N be a positive fixed integer. How many integers 1 ≤ n ≤ N are such that:

11× 2n−1 ≡ 4n+ 6 (mod 13)?

70. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Let suppose that in a board are written numbers in a line
like this

1 1
2

1
3 ... 1

n−1
1
n

Now we add first number with seconnd and write down to middle of the numbers ,
same thing we add the k− th number with (k+ 1)− th number and write down to
middle of the numbers and we create a new line with n − 1 new numbers and we
do the same thing with new line and repeated the same proces until we left with
only one number. Find the last number it is written on the board. For example if
n = 3 then
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1 1
2

1
3

3
2

5
6

7
3

Solutions
61. Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam. Given
a tetrahedron A1A2A3A4 with the volume V, let I and r be incenter and inradius,
respectively. Denote by Si the area of triangle opposite to vertex Ai(i = 1; 2; 3; 4).
Prove that

4∑
n=1

SiIA
2
i =

2rS1S2S3S4

9V 2

∑
1≤i<j≤4

AiAj sin∠(Ai, Aj),

where ∠(Ai, Aj) is the dihedral angle at edge AiAj .

Solution by Michel Bataille, Rouen, France. Let S = S1 + S2 + S3 + S4 and

K =
1
S

∑
1≤i<j≤4

SiSj ·AiA
2
j .

We show that K equals either side of the desired equality. First, consider the
orthogonal projections A′1 and A′′1 of A1 onto the opposite face (A2A3A4) and onto
the edge A2A3, respectively. Then ∠(A2, A3) = ∠A1A

′′
1A

′
1 and so

sin∠(A2, A3) =
A1A

′
1

A1A′′1
=

3V/S1

2S4/A2A3
=

3V
2
· A2A3

S1S4
.

This result immediately generalizes to any sin ∠(Ai, Aj) and we deduce that the
right-hand side R of the required equality is

R =
2rS1S2S3S4

9V 2
· 3V

2

∑
1≤i<j≤4

SiSj

S1S2S3S4
·AiA

2
j =

r

3V

∑
1≤i<j≤4

SiSj ·AiA
2
j = K (1)

where the last equality follows from V = 1
3rS1 + 1

3rS2 + 1
3rS3 + 1

3rS4 = rS
3 .

Second, the barycentric coordinates of I relatively to (A1, A2, A3, A4), which are
proportional to the volumes of the tetrahedrons IA2A3A4, IA1A3A4, IA1A2A4, IA1A2A3,
are also proportional to S1, S2, S3, S4, hence

SI = S1A1 + S2A2 + S3A3 + S4A4

and therefore we have for example:

S
−−→
A1I = S2

−−−→
A1A2 + S3

−−−→
A1A3 + S4

−−−→
A1A4.

The dot product (S
−−→
A1I) · (S

−−→
A1I) gives S2IA2

1 as

S2
2 ·A1A

2
2+S

2
3 ·A1A

2
3+S

2
4 ·A1A

2
4+2S2S3

−−−→
A1A2·

−−−→
A1A3+2S2S4

−−−→
A1A2·

−−−→
A1A4+2S3S4

−−−→
A1A3·

−−−→
A1A4,

that is,

S2IA2
1 = (S2+S3+S4)(S2A1A

2
2+S3A1A

2
3+S4A1A

2
4)−(S2S3A2A

2
3+S2S4A2A

2
4+S3S4A3A

2
4)
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using 2
−−−→
A1A2 ·

−−−→
A1A3 = A1A

2
2 +A1A

2
3−A2A

2
3 and similar relations for the other dot

products. Since S2 + S3 + S4 = S − S1, we can rewrite the previous result as

S1IA
2
1 =

S1

S

(
S2A1A

2
2 + S3A1A

2
3 + S4A1A

2
4 −K

)
.

Writing S2IA
2
2, S3IA

2
3 and S4IA

2
4 in a similar way and adding the four equalities,

we get
4∑

i=1

SiIA
2
i = 2K −K = K. (2)

The desired equality follows from (1) and (2).
Also solved by the proposer.

62. Proposed by Daniel Sitaru, Mathematics Department, Colegiul National Eco-
nomic Theodor Costescu, Drobeta Turnu - Severin, Mehedinti, Romania. Let be
A′, A′′ ∈ (BC);B′, B′′ ∈ (AC);C ′, C ′′ ∈ (AB) in ∆ABC such that AA′ ∩ BB′ ∩
CC ′ 6= ∅ and AA′′ ∩BB′′ ∩ CC ′′ 6= ∅. Prove that

27[A′B′C ′]
[A′′B′′C ′′]

≤
(
BA′

BA′′
+
CB′

CB′′ +
AC ′

AC ′′

)3

,

where [ABC] is area of triangle ABC.
Solution 1 by Ioan Viorel Codreanu, Satulung, Maramures, Romania.
Let BA′

A′C = x, CB′

B′A = y, AC′

C′B = z and BA′′

A′′C = x′, CB′′

B′′A = y′, AC′′

C′′B = z′. Then
AB′ = AC

y+1 and AC ′ = z·AB
z+1 . We get

[B′AC ′] =
AB′ ·AC ′ · sinA

2
=

z

(z + 1) (y + 1)
· [ABC] ,

and the similar relations [C ′BA′] = x
(x+1)(z+1) · [ABC] , [B′CA′] = y

(y+1)(x+1) ·
[ABC]. We have

[A′B′C ′] = [ABC]−[B′AC ′]−[C ′BA′]−[B′CA′] = [ABC]
(

1−
∑ x

(x+ 1) (z + 1)

)
and using the Ceva Theorem

∏
x = 1, we get

[A′B′C ′] =
2 [ABC]∏

(x+ 1)
.

Analogously, we prove that

[A′′B′′C ′′] =
2 [ABC]∏
(x′ + 1)

,

and then
[A′B′C ′]

[A′′B′′C ′′]
=
∏

(x′ + 1)∏
(x+ 1)

.

We have BA′ = x·BC
x+1 , BA

′′ = x′·BC
x′+1 it results that BA′

BA′′ =
x(x′+1)
x′(x+1) and the sim-

ilar relations. Using the Ceva Theorem
∏
x = 1,

∏
x′ = 1 and the AM-GM

Inequality, we get(∑ BA′

BA′′

)3

≥ 27
∏ BA′

BA′′
= 27

∏ x (x′ + 1)
x′ (x+ 1)

= 27
∏

(x′ + 1)∏
(x+ 1)

=
27 [A′B′C ′]
[A′′B′′C ′′]

.
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Solution 2 by Neculai Stanciu, ”George Emil Palade” School, Buzău,
Romania and Titu Zvonaru, Comăneşti, Romania. We denote: x′ = BA′

A′C ,
y′ = CB′

B′A , z′ = AC′

C′B , x′′ = BA′′

A′′C , y′′ = CB′′

B′′A , z′′ = AC′′

C′′B .
By Routh’ theorem we have

[A′B′C ′] =
x′y′z′ + 1

(x′ + 1)(y′ + 1)(z′ + 1)
[ABC], [A′′B′′C ′′] =

x′′y′′z′′ + 1
(x′′ + 1)(y′′ + 1)(z′′ + 1)

[ABC]

Because we have x′y′z′ = x′′y′′z′′ = 1, the inequality to prove becomes

27(x′′ + 1)(y′′ + 1)(z′′ + 1)
(x′ + 1)(y′ + 1)(z′ + 1)

≤
(
x′(x′′ + 1)
x′′(x′ + 1)

+
y′(y′′ + 1)
y′′(y′ + 1)

+
z′(z′′ + 1)
z′′(z′ + 1)

)3

which yields immediately by AM-GM inequality.
Solution 3 by Michel Bataille, Rouen, France. Let P (resp. Q) be the point of
concurrency of the cevians AA′, BB′, CC ′ (resp. AA′′, BB′′, CC ′′). In barycentric
coordinates relatively to (A,B,C), we have P = (x1 : x2 : x3) and Q = (y1 : y2 : y3)
where x1, x2, x3, y1, y2, y3 are positive real numbers and x1+x2+x3 = y1+y2+y3 =
1. With these notations, the coordinates of A′, B′, C ′ are

A′ = (0 : x2 : x3), B′ = (x1 : 0 : x3), C ′ = (x1 : x2 : 0) (1)

and therefore [A′B′C′]
[ABC] = |δ| where

δ =

∣∣∣∣∣∣
0 x1

x1+x3

x1
x1+x2

x2
x2+x3

0 x2
x1+x2

x3
x2+x3

x3
x1+x3

0

∣∣∣∣∣∣ .
We readily obtain [A′B′C′]

[ABC] = 2x1x2x3
(x1+x2)(x2+x3)(x1+x3)

; a similar result holds for [A′′B′′C′′]
[ABC]

and it follows that the left-hand side of the inequality is L with

L =
27x1x2x3(y1 + y2)(y2 + y3)(y1 + y3)
y1y2y3(x1 + x2)(x2 + x3)(x1 + x3)

.

From (1), we have (x2 + x3)A′ = x2B + x3C, hence (x2 + x3)
−−→
BA′ = x3

−−→
BC and so

BA′ = x3·BC
x2+x3

. Similarly, BA′′ = y3·BC
y2+y3

so that BA′

BA′′ = x3(y2+y3)
y3(x2+x3)

. In the same way,
we arrive at

CB′

CB′′ =
x1(y1 + y3)
y1(x1 + x3)

,
AC ′

AC ′′
=
x2(y1 + y2)
y2(x1 + x2)

and the right-hand side R writes as

R =
(
x3(y2 + y3)
y3(x2 + x3)

+
x1(y1 + y3)
y1(x1 + x3)

+
x2(y1 + y2)
y2(x1 + x2)

)3

.

The desired inequalityR ≥ L now results from (a1+a2+a3)3 ≥ 27a1a2a3 (AM-GM)
applied to

a1 =
x3(y2 + y3)
y3(x2 + x3)

, a2 =
x1(y1 + y3)
y1(x1 + x3)

, a3 =
x2(y1 + y2)
y2(x1 + x2)

.

Also solved by the proposer.

63. Proposed by Leonard Giugiuc, National College Traian, Drobeta Turnu Sev-
erin, Romania. Let a, b, c ∈ R. Prove that

9
√

2(ab(a− b) + bc(b− c) + ca(c− a)) ≤
√

3
(
(a− b)2 + (b− c)2 + (c− a)2

) 3
2 .
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Solution 1 by Michel Bataille, Rouen, France. The inequality is obvious if
ab(a− b) + bc(b− c) + ca(c− a) ≤ 0 and otherwise is equivalent to

54 ((a− b)(b− c)(a− c))2 ≤
(
(a− b)2 + (b− c)2 + (c− a)2

)3
(1)

(since ab(a − b) + bc(b − c) + ca(c − a) = (a − b)(b − c)(a − c)). Let L(a, b, c) =
54 ((a− b)(b− c)(a− c))2 andR(a, b, c) =

(
(a− b)2 + (b− c)2 + (c− a)2

)3
. If a1 =

a− c, b1 = b− c and c1 = 0, then a1 − b1 = a− b, b1 − c1 = b− c, a1 − c1 = a− c
so that L(a1, b1, c1) = L(a, b, c) and R(a1, b1, c1) = R(a, b, c). It follows that it
suffices to prove (1) in the case when c = 0, that is, to show that 54(a− b)2a2b2 ≤(
(a− b)2 + b2 + a2

)3 or equivalently,

27a2b2(a− b)2 ≤ 4(a2 + b2 − ab)3. (2)

Now, it is straightforward to check the identity

4(a2 + b2 − ab)3 − 27a2b2(a− b)2 = (a− 2b)2(2a− b)2(a+ b)2

so that (2) writes as (a− 2b)2(2a− b)2(a+ b)2 ≥ 0 and clearly holds.
Solution 2 by Arkady Alt, San Jose, California, USA. Due to cyclic sym-
metry of inequality we may assume that a = max {a, b, c} . Since the inequality is
obviously holds if b < c (because then
ab(a−b)+bc(b−c)+ca(c−a) = (a− b) (a− c) (b− c) ≤ 0 ) suffice to consider only
case when b ≥ c, that is a ≥ b ≥ c. Let x = b− c, y = a− b, p = x+y, q = xy. Then
x, y ≥ 0, a = c+ x+ y, b = c+ x,
ab(a− b) + bc(b− c) + ca(c− a) = (x+ y)xy = pq, (a− b)2 + (b− c)2 + (c− a)2 =(
x2 + y2 + (x+ y)2

)
= 2

(
x2 + y2 + xy

)
= 2

(
p2 − q

)
and in the new notation the

inequality is

9
√

2pq ≤
√

3
(
2
(
p2 − q

))3/2
, where q ≥ 0 and q ≤ p2

4
(condition of solvability

of Vieta’s System
{
x+ y = p
xy = q

in real x, y). We have
√

3
(
2
(
p2 − q

))3/2−9
√

2pq ≥

√
3
(

2
(
p2 − p2

4

))3/2

− 9
√

2p · p
2

4
=
√

3
(

3p2

2

)3/2

− 9p3

2
√

2
=

9p3

2
√

2
− 9p3

2
√

2
= 0.

Also solved by Kevin Soto Palacios, Huarmey,Peru; Ravi Prakash, New
Delhi, India; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Ro-
mania and the proposer.

64. Problem proposed by Arkady Alt, San Jose, California, USA. Let ∆ (x, y, z) :=
2(xy + yz + xz) − (x2 + y2 + z2) and let a, b, c be sidelengths of a triangle with
area F. Prove that

∆
(
a3, b3, c3

)
≤ 64F 3

√
3
.

Solution by Michel Bataille, Rouen, France. In the featured solution of
problem 1973 in Mathematics Magazine, Vol. 89, No 4, October 2016, p. 297, it is
proved that

∆(a, b, c) ·∆(a3, b3, c3) ≤
(
∆(a2, b2, c2)

)2
(1)

whenever a, b, c are positive real numbers. Taking for a, b, c the sidelengths of the
triangle, we calculate

∆(a, b, c) = 2(ab+bc+ca)−(a2+b2+c2) = 2(s2+r2+4rR)−(2s2−2r2−8rR) = 4r(r+4R) > 0
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where s, r, R are the semi-perimeter, the inradius, the circumradius of the triangle,
respectively, and

∆(a2, b2, c2) = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4) = 16F 2

(from Heron’s formula). Applying (1), we deduce

∆(a3, b3, c3) ≤ 64F 4

r(r + 4R)

and see that it is sufficient to show that
√

3F ≤ r(r + 4R) or, since F = rs,
√

3s ≤ r + 4R.

We are done since the latter is a known inequality, proved in O. Bottema et al.,
Geometric Inequalities, Wolters-Noordhoff Publishing, 1968, 5.5, p. 49.

Also solved by the proposer.

65. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Find all function f : N → N such that mf(n) + f(m) is
divisible by f(m)(f(n) + 1) for all m,n ∈ N.
Solution by Michel Bataille, Rouen, France. The identity function idN, de-
fined by idN(n) = n for all n ∈ N, is clearly a solution. We show that there are no
other solutions. To this end, we consider an arbitrary solution f and prove that we
must have f(m) = m for all m ∈ N. For each pair (m,n) ∈ N× N, we have

mf(n) + f(m) = g(m,n)f(m)(f(n) + 1) (1)

for some positive integer g(m,n).
Let a = f(1). With (m,n) = (1, 1), (1) yields 2a = g(1, 1)a(a + 1), hence 2 =
(a+ 1)g(1, 1) and so a+ 1 = 2, that is, f(1) = 1. From (1), we then deduce that

(2g(m, 1)− 1)f(m) = m (2)

for any positive integer m. Consider any m > 1; such an integer can be written
as m = 2r · s for a unique pair (r, s) where r is a nonnegative integer and s is a
positive odd integer. Using (2), we obtain (2g(m, 1) − 1)f(2rs) = 2rs or, setting
f(2rs) = 2r′s′ (r′ ≥ 0, s′ odd), (2g(m, 1)− 1)2r′s′ = 2rs. This demands r′ = r and
s′ = d, some divisor of s, so that f(m) = f(2rs) = 2rd where s = dd′ for integers
d, d′. Note that in particular f(2r) = 2r.
Now, equality (1) with m = 2rs and n = 2u (u ∈ N) gives 2ud′+1 = g(m,n)(2u+1).
As a result, the integer 2u + 1 divides 2ud′ + 1 = (2u + 1)d′ + 1 − d′, hence also
divides d′ − 1. Since u is arbitrary, d′ − 1 has infinitely many divisors. The only
possibility is d′ = 1 and so f(2rs) = 2rs. The desired result f(m) = m follows and
the proof is complete.
Also solved by the proposer.
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